The Stack
When you call a function the arguments to that function plus some other overhead is put on the stack. Some info (such as where to go on return) is also stored there.
When you declare a variable inside your function, that variable is also allocated on the stack.
Deallocating the stack is pretty simple because you always deallocate in the reverse order in which you allocate. Stack stuff is added as you enter functions, the corresponding data is removed as you exit them. This means that you tend to stay within a small region of the stack unless you call lots of functions that call lots of other functions (or create a recursive solution).
The Heap
The heap is a generic name for where you put the data that you create on the fly. If you don't know how many spaceships your program is going to create, you are likely to use the new (or malloc or equivalent) operator to create each spaceship. This allocation is going to stick around for a while, so it is likely we will free things in a different order than we created them.
Thus, the heap is far more complex, because there end up being regions of memory that are unused interleaved with chunks that are - memory gets fragmented. Finding free memory of the size you need is a difficult problem. This is why the heap should be avoided (though it is still often used).
Implementation
Implementation of both the stack and heap is usually down to the runtime / OS. Often games and other applications that are performance critical create their own memory solutions that grab a large chunk of memory from the heap and then dish it out internally to avoid relying on the OS for memory.
This is only practical if your memory usage is quite different from the norm - i.e for games where you load a level in one huge operation and can chuck the whole lot away in another huge operation.
Physical location in memory
This is less relevant than you think because of a technology called Virtual Memory which makes your program think that you have access to a certain address where the physical data is somewhere else (even on the hard disc!). The addresses you get for the stack are in increasing order as your call tree gets deeper. The addresses for the heap are un-predictable (i.e implimentation specific) and frankly not important.