I think you should ask the other way around: Why shouldn't this be possible? Factory
is just a type like any type which gets resolved by the compiler.
As most of the answers here point out that this is working only because Factory
is a static field, I have added the following sample. Please note that this is a very primitive sample of a chained list (you probably wouldn't implement it that way for various reasons, but I didn't come up with a better example yet). In this example, ChainedListItem
is a container for an element of a single-linked list, which contains a field of the very same type to point to the next item in the list. The list has an (empty) head element and the last element is marked by having an empty _nextItem
field:
public class ChainedListItem<T>
{
private ChainedListItem<T> _nextItem;
T _content;
public ChainedListItem<T> NextItem
{
get { return _nextItem; }
set { _nextItem = value; }
}
public T Content
{
get { return _content; }
set { _content = value; }
}
public ChainedListItem<T> Add(T content)
{
_nextItem = new ChainedListItem<T>();
_nextItem.Content = content;
return _nextItem;
}
public void Dump()
{
ChainedListItem<T> current = this;
while ((current = current.NextItem) != null)
{
Console.WriteLine(current._content);
}
}
}
class Program
{
static void Main(string[] args)
{
ChainedListItem<int> chainedList = new ChainedListItem<int>();
chainedList.Add(1).Add(2).Add(3);
chainedList.Dump();
}
}
The "rabbit hole" goes as deep as your stack space allows you to make another call to the constructor of the type. If you try to go deeper than that, you will get a stackoverflow exception as with any other recursion.
By the way, the code that you wrote in your answer is showing a very basic implementation of a Singleton which is actually based on having a (private) static member of the same type as the surrounding type.
And, last but not least, such constructs are also perfectly fine in C++.