Pascal's rule on counting the subset's of a set works great, when the set contains unique entities.
Is there a modification to this rule for when the set contains duplicate items?
For instance, when I try to find the count of the combinations of the letters A,B,C,D, it's easy to see that it's 1 + 4 + 6 + 4 + 1 (from Pascal's Triangle) = 16, or 15 if I remove the "use none of the letters" entry.
Now, what if the set of letters is A,B,B,B,C,C,D? Computing by hand, I can determine that the sum of subsets is: 1 + 4 + 8 + 11 + 11 + 8 + 4 + 1 = 48, but this doesn't conform to the Triangle I know.
Question: How do you modify Pascal's Triangle to take into account duplicate entities in the set?