Why should default parameters be added last in C++ functions?
What would happen if the first one was default? How would the compiler know that the provided value is for the second parameter?
Or do you mean at the end of the project?
If you define the following function:
void foo( int a, int b = 0, int c );
How would you call the function and supply a value for a and c, but leave b as the default?
foo( 10, ??, 5 );
Unlike some other languages (eg, Python), function arguments in C/C++ can not be qualified by name, like the following:
foo( a = 10, c = 5 );
If that were possible, then the default arguments could be anywhere in the list.
Imagine you had a function with this prototype:
void testFunction(bool a = false, bool b = true, bool c);
Now suppose I called the function like this:
testFunction(true, false);
How is the compiler supposed to figure out which parameters I meant to supply values for?
To simplify the language definition and keep code readable.
void foo(int x = 2, int y);
To call that and take advantage of the default value, you'd need syntax like this:
foo(, 3);
Which was probably felt to be too weird. Another alternative is specifying names in the argument list:
foo(y : 3);
A new symbol would have to be used because this already means something:
foo(y = 3); // assign 3 to y and then pass y to foo.
The naming approach was considered by rejected by the ISO committee because they were uncomfortable with introducing a new significance to parameter names outside of the function definition.
If you're interested in more C++ design rationales, read The Design and Evolution of C++ by Stroustrup.
As a general rule function parameters are processed by the compiler and placed on the stack in right to left order. Therefore it makes sense that any parameters with default values should be evaluated first.
(This applieds to __cdecl, which tends to be the default for VC++ and __stdcall function declarations).
Its because it uses the relative position of arguments to find to which parameters they correspond.
It could have used the types to identify that an optional parameter was not given. But implicit conversion could interfere with it. Another problem would be programming errors that could be interpreted as optional arguments drop out instead of missing argument error.
In order to allow any argument to become optional, there should be a way to identify the arguments to make sure there is no programming error or to remove ambiguities. This is possible in some languages, but not in C++.
As most of the answers point out, having default parameters potentially anywhere in the parameter list increases the complexity and ambiguity of function calls (for both the compiler and probably more importantly for the users of the function).
One nice thing about C++ is that there's often a way to do what you want (even if it's not always a good idea). If you want to have default arguments for various parameter positions, you can almost certainly do this by writing overloads that simply turn around and call the fully-parameterized function inline:
int foo( int x, int y);
int foo( int y) {
return foo( 0, y);
}
And there you have the equivalent of:
int foo( int x = 0, int y);
Another thing that the standards committee had to consider was how default parameters interacts with other features, like overloaded functions, template resolution, and name lookup. These features interact in very complex and hard to describe ways already. Making default parameters be able to appear anywhere would only increase the complexity.