Properly formatted your data looks like this
862 2006-05-19 6.241603 5.774208
863 2006-05-20 NA NA
864 2006-05-21 NA NA
865 2006-05-22 6.383929 5.906426
866 2006-05-23 6.782068 6.268758
867 2006-05-24 6.534616 6.013767
868 2006-05-25 6.370312 5.856366
869 2006-05-26 6.225175 5.781617
870 2006-05-27 NA NA
and is of a time-series nature. So I would load into an object of class zoo
(from the zoo package) as that allows you to pick a number of strategies -- see below. Which one you pick depends on the nature of your data and application. In general, the field of 'figuring missing data out' is called data imputation
and there is a rather large literature.
R> x <- zoo(X[,3:4], order.by=as.Date(X[,2]))
R> x
x y
2006-05-19 6.242 5.774
2006-05-20 NA NA
2006-05-21 NA NA
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 NA NA
R> na.locf(x) # last observation carried forward
x y
2006-05-19 6.242 5.774
2006-05-20 6.242 5.774
2006-05-21 6.242 5.774
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 6.225 5.782
R> na.approx(x) # approximation based on before/after values
x y
2006-05-19 6.242 5.774
2006-05-20 6.289 5.818
2006-05-21 6.336 5.862
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
R> na.spline(x) # spline fit ...
x y
2006-05-19 6.242 5.774
2006-05-20 5.585 5.159
2006-05-21 5.797 5.358
2006-05-22 6.384 5.906
2006-05-23 6.782 6.269
2006-05-24 6.535 6.014
2006-05-25 6.370 5.856
2006-05-26 6.225 5.782
2006-05-27 5.973 5.716
R>