I've been mystified by the R quantile function all day.
I have an intuitive notion of how quantiles work, and an M.S. in stats, but boy oh boy, the documentation for it is confusing to me.
From the docs:
Q[i](p) = (1 - gamma) x[j] + gamma x[j+1],
I'm with it so far. For a type i quantile, it's an interpolation between x[j] and x [j+1], based on some mysterious constant gamma
where 1 <= i <= 9, (j-m)/n <= p < (j-m+1)/ n, x[j] is the jth order statistic, n is the sample size, and m is a constant determined by the sample quantile type. Here gamma depends on the fractional part of g = np+m-j.
So, how calculate j? m?
For the continuous sample quantile types (4 through 9), the sample quantiles can be obtained by linear interpolation between the kth order statistic and p(k):
p(k) = (k - alpha) / (n - alpha - beta + 1), where α and β are constants determined by the type. Further, m = alpha + p(1 - alpha - beta), and gamma = g.
Now I'm really lost. p, which was a constant before, is now apparently a function.
So for Type 7 quantiles, the default...
Type 7
p(k) = (k - 1) / (n - 1). In this case, p(k) = mode[F(x[k])]. This is used by S.
Anyone want to help me out? In particular I'm confused by the notation of p being a function and a constant, what the heck m is, and now to calculate j for some particular p.
I hope that based on the answers here, we can submit some revised documentation that better explains what is going on here.
quantile.R source code or type: quantile.default