I don't mean external tools. I think of architectural patterns, language constructs, habits. I am mostly interested in C++
views:
903answers:
28Which programming technique helps you most to avoid or resolve bugs before they come into production
Using an IDE like IntelliJ that inspects my code as I write it and flags dodgy code as I write it.
I find the following rather handy.
1) ASSERTs.
2) A debug logger that can output to the debug spew, console or file.
3) Memory tracking tools.
4) Unit testing.
5) Smart pointers.
Im sure there are tonnes of others but I can't think of them off the top of my head :)
Model-View-Controller, and in general anything with contracts and interfaces that can be unit-tested automatically.
I find many problems before i start testing at all using
asserts
Code Review, Unit Testing, and Continuous Integration may all help.
There's an oft-unappreciated technique that I like to call The QA Team that can do wonders for weeding out bugs before they reach production.
It's been my experience (and is often quoted in textbooks) that programmers don't make the best testers, despite what they may think, because they tend to test to behaviour they already know to be true from their coding. On top of that, they're often not very good at putting themelves in the shoes of the end user (if it's that kind of app), and so are likely to neglect UI formatting/alignment/usability issues.
Yes, unit testing is immensely important and I'm sure others can give you better tips than I on that, but don't neglect your system/integration testing. :)
..and hey, it's a language independent technique!
Testing it with actual, realistic data from the start. And testing is necessary not only while writing the code, but it should start early in the design phase. Find out what your worst use cases will be like, and make sure your design can handle it. If your design feels good and elegant even against these use cases, it might actually be good.
Automated tests are great for making sure the code you write is correct. However, before you get to writing code, you have to make sure you're building the right things.
I find peer progamming tends to help avoid alot of the silly mistakes, and alot of the time generates discussions which uncover flaws. Plus with someone free to think about the why you are doing something, it tends to make everything cleaner.
Reducing variables scope to as narrow as possible. Less variables in outer scope - less chances to plant and hide an error.
Learning functional programming helps somehow.
HERE
Learn you a haskell for great good.
Book suggestions: "Code Complete" and "Release it" are two must-read books on this topic.
- Strive for simplicity and conciseness.
- Never leave cases where your code behavior is undefined.
- Look for opportunities to leverage the type system and have the compiler check as much as possible at compile time. Templates and code generation are your friends as long as you keep your common sense.
- Minimize the number of singletons and global variables.
- Use RAII !
- Use assertions !
- Automatic testing of some nominal and all corner cases.
- Avoid last minute changes like the plague.
I found that, the more is done and checked at compile time, the less can possibly go wrong at run-time. So I try to leverage techniques that allow stricter checking at compile-time. That's one of the reason I went into template-meta programming. If you do something wrong, it doesn't compile and thus never leaves your desk (and thus never arrives at the customer's).
I agree with many of the other answers here.
Specific to C++, the use of 'const' and avoiding raw pointers (in favor of references and smart pointers) when possible has helped me find errors at compile time.
Also, having a "no warnings" policy helps find errors.
In addition to the already mentioned things I believe that some features introduced with C++0x will help avoiding certain bugs. Features like strongly-typed enums, for-in loops and deleteing standard functions of objects come to mind.
In general strong typing is the way to go imho
Coding style consistency across a project.
Not just spaces vs. tab issues, but the way that code is used. There is always more than one way to do things. When the same thing gets done differently in different places, it makes catching common errors more difficult.
It's already been mentioned here, but I'll say it again because I believe this cannot be said enough:
Unnecessary complexity is the arch nemesis of good engineering.
Keep it simple. If things start looking complicated, stop and ask yourself why and what you can do to break the problem down into smaller, simpler chunks.
Requirements.
From my experience, having full and complete requirements is the number one step in creating bug-free software. You can't write complete and correct software if you don't know what it's supposed to do. You can't write proper tests for software if you don't know what it's supposed to do; you'll miss a fair amount of stuff you should test. Also, the simple process of writing the requirements helps you to flesh them out. You find so many issues and problems before you ever write the first line of code.
Hire someone that test/validate your software.
We have a guy that use our software before any of our customer. He finds bugs that our automated tests processes do not find, because he thinks as a customer not as a software developper. This guy also gives support to our customers, because he knows very well the software from the customer point of view. INVALUABLE.
Something not mentioned yet - when there's even semi-complex logic going on, name your variables and functions as accurately as you can (but not too long). This will make incongruencies in their interactions with each other, and with what they're supposed to be doing stand out better. The 'meaning', or language-parsing part of your brain will have more to grab on to. I find that with vaguely named things, your brain sort of glosses over what's really there and sees what is /supposed to/ be happening rather than what actually is.
Also, make code clean, it helps to keep your brain from getting fuzzy.
Code reviews; I've personally found lots of bugs in my colleagues' code and they have found bugs in mine.
Code reviews, early and often, will help you to both understand each others' code (which helps for maintenance), and spot bugs.
The sooner you spot a bug the easier it is to fix. So do them as soon as you can.
Of course pair programming takes this to an extreme.
Test-driven development combined with pair programming seems to work quite well on keeping some bugs down. Getting the tests created early helps work out some of the design as well as giving some confidence should someone else have to work with the code.
Creating a string representation of class state, and printing those out to console. Note that in some cases single line-string won't be enough, you will have to code small printing loop, that would create multi-line representation of class state. Once you have "visualized" your program in such a way you can start to search errors in it. When you know which variable contained wrong value in the end, it's easy to place asserts everywhere where this variable is assigned or modified. This way you can pin point the exact place of error, and fix it without using the step-by-step debugging (which is rather slow way to find bugs imo).
Just yesterday found a really nasty bug without debugging a single line:
vector<string> vec;
vec.push_back("test1");
vec.push_back(vec[0]); // second element is not "test1" after this, it's empty string
I just kept placing assert-statements and restarting the program, until multi-line representation of program's state was correct.