I've been looking at a similar problem. I've found reference to caluclating confidence intervals by Burdick and Graybill (Burdick, R. and Graybill, F. 1992, Confidence Intervals on variance components, CRC Press)
Using some code I've been trying I get these values
> kiaraov = aov(Value~Run+Error(Run),data=kiar)
> summary(kiaraov)
Error: Run
Df Sum Sq Mean Sq
Run 3 2.57583 0.85861
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 8 1.93833 0.24229
> confint = 95
> a = (1-(confint/100))/2
> grandmean = as.vector(kiaraov$"(Intercept)"[[1]][1]) # Grand Mean (I think)
> within = summary(kiaraov)$"Error: Within"[[1]]$"Mean Sq" # S2^2Mean Square Value for Within Run
> dfRun = summary(kiaraov)$"Error: Run"[[1]]$"Df"
> dfWithin = summary(kiaraov)$"Error: Within"[[1]]$"Df"
> Run = summary(kiaraov)$"Error: Run"[[1]]$"Mean Sq" # S1^2Mean Square for between Run
> between = (Run-within)/((dfWithin/(dfRun+1))+1) # (S1^2-S2^2)/J
> total = between+within
> between # Between Run Variance
[1] 0.2054398
> within # Within Run Variance
[1] 0.2422917
> total # Total Variance
[1] 0.4477315
> betweenCV = sqrt(between)/grandmean * 100 # Between Run CV%
> withinCV = sqrt(within)/grandmean * 100 # Within Run CV%
> totalCV = sqrt(total)/grandmean * 100 # Total CV%
> #within confidence intervals
> withinLCB = within/qf(1-a,8,Inf) # Within LCB
> withinUCB = within/qf(a,8,Inf) # Within UCB
> #Between Confidence Intervals
> n1 = dfRun
> n2 = dfWithin
> G1 = 1-(1/qf(1-a,n1,Inf)) # According to Burdick and Graybill this should be a
> G2 = 1-(1/qf(1-a,n2,Inf))
> H1 = (1/qf(a,n1,Inf))-1 # and this should be 1-a, but my results don't agree
> H2 = (1/qf(a,n2,Inf))-1
> G12 = ((qf(1-a,n1,n2)-1)^2-(G1^2*qf(1-a,n1,n2)^2)-(H2^2))/qf(1-a,n1,n2) # again, should be a, not 1-a
> H12 = ((1-qf(a,n1,n2))^2-H1^2*qf(a,n1,n2)^2-G2^2)/qf(a,n1,n2) # again, should be 1-a, not a
> Vu = H1^2*Run^2+G2^2*within^2+H12*Run*within
> Vl = G1^2*Run^2+H2^2*within^2+G12*within*Run
> betweenLCB = (Run-within-sqrt(Vl))/J # Betwen LCB
> betweenUCB = (Run-within+sqrt(Vu))/J # Between UCB
> #Total Confidence Intervals
> y = (Run+(J-1)*within)/J
> totalLCB = y-(sqrt(G1^2*Run^2+G2^2*(J-1)^2*within^2)/J) # Total LCB
> totalUCB = y+(sqrt(H1^2*Run^2+H2^2*(J-1)^2*within^2)/J) # Total UCB
> result = data.frame(Name=c("within", "between", "total"),CV=c(withinCV,betweenCV,totalCV),LCB=c(sqrt(withinLCB)/grandmean*100,sqrt(betweenLCB)/grandmean*100,sqrt(totalLCB)/grandmean*100),UCB=c(sqrt(withinUCB)/grandmean*100,sqrt(betweenUCB)/grandmean*100,sqrt(totalUCB)/grandmean*100))
> result
Name CV LCB UCB
1 within 4.926418 3.327584 9.43789
2 between 4.536327 NaN 19.73568
3 total 6.696855 4.846030 20.42647
Here the lower confidence interval for between run CV is less than zero, so reported as NaN.
I'd love to have a better way to do this. If I get time I might try to create a function to do this.
Paul.
--