When writing a Java program, do I have influence on how the CPU will utilize its cache to store my data? For example, if I have an array that is accessed a lot, does it help if it's small enough to fit in one cache line (typically 128 byte on a 64-bit machine)? What if I keep a much used object within that limit, can I expect the memory used by it's members to be close together and staying in cache?
Background: I'm building a compressed digital tree, that's heavily inspired by the Judy arrays, which are in C. While I'm mostly after its node compression techniques, Judy has CPU cache optimization as a central design goal and the node types as well as the heuristics for switching between them are heavily influenced by that. I was wondering if I have any chance of getting those benefits, too?
Edit: The general advice of the answers so far is, don't try to microoptimize machine-level details when you're so far away from the machine as you're in Java. I totally agree, so felt I had to add some (hopefully) clarifying comments, to better explain why I think the question still makes sense. These are below:
There are some things that are just generally easier for computers to handle because of the way they are built. I have seen Java code run noticeably faster on compressed data (from memory), even though the decompression had to use additional CPU cycles. If the data were stored on disk, it's obvious why that is so, but of course in RAM it's the same principle.
Now, computer science has lots to say about what those things are, for example, locality of reference is great in C and I guess it's still great in Java, maybe even more so, if it helps the optimizing runtime to do more clever things. But how you accomplish it might be very different. In C, I might write code that manages larger chunks of memory itself and uses adjacent pointers for related data.
In Java, I can't (and don't want to) know much about how memory is going to be managed by a particular runtime. So I have to take optimizations to a higher level of abstraction, too. My question is basically, how do I do that? For locality of reference, what does "close together" mean at the level of abstraction I'm working on in Java? Same object? Same type? Same array?
In general, I don't think that abstraction layers change the "laws of physics", metaphorically speaking. Doubling your array in size every time you run out of space is a good strategy in Java, too, even though you don't call malloc()
anymore.