This site has a pretty good collection of formulae. For your case,
Let lon1,lat1 be the starting point, θ the azimuth angle (also often referred to as the "bearing") in radians,
d the distance traveled (km), and R the earth's radius (approx 6371 km). Then you can find
the final coordinates lon2, lat2 :
lat2 = asin(sin(lat1)*cos(d/R) + cos(lat1)*sin(d/R)*cos(θ))
lon2 = lon1 + atan2(sin(θ)*sin(d/R)*cos(lat1), cos(d/R)−sin(lat1)*sin(lat2))
Note: d/R represents an angle in radians corresponding to the arc length d.
θ is measured such that North=0 degrees, East=90 degrees, and so forth.