Forget floating point, you need bit strings that represent integers
This takes a bit less than 1/2 megabyte per number. "Efficient" can mean a number of things. Space-efficient? Time-efficient? Easy-to-program with?
Your question is tagged floating-point, but I'm quite sure you do not want floating point at all. The entire idea of floating point is that our data is only known to a few significant figures and even the famous constants of physics and chemistry are known precisely to only a handful or two of digits. So there it makes sense to keep a reasonable number of digits and then simply record the exponent.
But your task is quite different. You must account for every single bit. Given that, no floating point or decimal arithmetic package is going to work unless it's a template you can arbitrarily size, and then the exponent will be useless. So you may as well use integers.
What you really really need is a string of bits. This is simply an array of convenient types. I suggest <stdint.h>
and simply using uint32_t[125000]
(or 64) to get started. This actually might be a great use of the more obscure constants from that header that pick out bit sizes that are fast on a given platform.
To be more specific we would need to know more about your goals. Is this for practice in a specific language? For some investigation into number theory? If the latter, why not just use a language that already supports Bignum's, like Ruby?
Then the storage is someone else's problem. But, if what you really want to do is implement a big number package, then I might suggest using bcd (4-bit) strings or even ordinary ascii 8-bit strings with printable digits, simply because things will be easier to write and debug and maximum space and time efficiency may not matter so much.