Think of what you'd do in the real world: You can't cut a ball with a line, you must use a knife (a line has no volume). To cut the ball, you must move the knife through the ball.
So what you're looking after is a plane, not a line. To get such a plane, you must use some 3D math. What you have is the canvas orientation and the "side view" of the plane (which looks like a line).
So the plane you're looking for is perpendicular to the canvas. A simple way to get such a plane is to take the canvas orientation and create a plane which has the same orientation and then rotate the plane around the line by 90°.
After that, you can visit all edges of your model and determine on which side of the plane they are. For this, determine on which side of the plane the end points of the edge are. Use the cross product. If they are on the same side (both results of the cross products will have the same sign), you can ignore the edge. Otherwise, you need to determine the intersection point of the edge and plane. Create new edges and connect them accordingly.
See this page for some background on the math. But you should find some helper methods for all this in your opengl library.
if I rotate / translate the ball, would all the the vertices information change
Of course.