Do you want a random value, or a unique value?
random != unique.
Remember, random merely states a probability of not generating the same value, or a probability of generating the same value again. As time increases, likelihood of generating a previous value increases - becoming a near certainty. Which do you require?
Personally, I recommend just using a Guid with some context [refer to easiest section below]. I also provided some other suggestions so you have options, depending on your situation.
easiest
If Code is an unbounded string [ie can be of any length], easiest semi-legible means of generating a unique code would be
OrmObject ormObject= new OrmObject ();
string code = string.
Format ("{0} [{1}]", ormObject.Name, Guid.NewGuid ()).
Trim ();
// generates something like
// "My Product [DA9190E1-7FC6-49d6-9EA5-589BBE6E005E]"
you can substitute ormObject.Name
for any distinguishable string. I would typically use typeof (objectInstance.GetType ()).Name
but that will only work if OrmObject is a base class, if it's a concrete class used for everything they will all end up with similar tags. The point is to add some user context, such that - as in @Yuriy Faktorovich's referenced wtf article - users have something to read.
random
I responded a day or two ago about random number generation. Not so much generating numbers as building a simple flexible framework around a generator to improve quality of code and data, this should help streamline your source.
If you read that, you could easily write an extension method, say
public static class IRandomExtensions
{
public static CodeType GetCode (this IRandom random)
{
// 1. get as many random bytes as required
// 2. transform bytes into a 'Code'
// 3. bob's your uncle
...
}
}
// elsewhere in code
...
OrmObject ormObject = new OrmObject ();
ormObject.Code = random.GetCode ();
...
To actually generate a value, I would suggest implementing an IRandom
interface with a System.Security.Cryptography.RNGCryptoServiceProvider
implementation. Said implementation would generate a buffer of X random bytes, and dole out as many as required, regenerating a stream when exhausted.
Furthermore - I don't know why I keep writing, I guess this problem is really quite fascinating! - if CodeType is string and you want something readable, you could just take said random bytes and turn them into a "seemingly" readable string via Base64 conversion
public static class IRandomExtensions
{
// assuming 'CodeType' is in fact a string
public static string GetCode (this IRandom random)
{
// 1. get as many random bytes as required
byte[] randomBytes; // fill from random
// 2. transform bytes into a 'Code'
string randomBase64String =
System.Convert.ToBase64String (randomBytes).Trim ("=");
// 3. bob's your uncle
...
}
}
Remember
random != unique.
Your values will repeat. Eventually.
unique
There are a number of questions you need to ask yourself about your problem.
- Must all
Code
values be unique? [if not, you're trying too hard]
- What Type is
Code
? [if any-length string, use a full Guid]
- Is this a distributed application? [if not, use a DB value as suggested by @LBushkin above]
- If it is a distributed application, can client applications generate and submit instances of these objects? [if so, then you want a globally unique identifier, and again Guids are a sure bet]
I'm sure you have more constraints, but this is an example of the kind of line of inquiry you need to perform when you encounter a problem like your own. From these questions, you will come up with a series of constraints. These constraints will inform your design.
Hope this helps :)
Btw, you will receive better quality solutions if you post more details [ie constraints] about your problem. Again, what Type is Code
, are there length constraints? Format constraints? Character constraints?
Arg, last edit, I swear. If you do end up using Guids, you may wish to obfuscate this, or even "compress" their representation by encoding them in base64 - similar to base64 conversion above for random numbers.
public static class GuidExtensions
{
public static string ToBase64String (this Guid id)
{
return System.Convert.
ToBase64String (id.ToByteArray ()).
Trim ("=");
}
}
Unlike truncating, base64 conversion is not a lossful transformation. Of course, the trim above is lossful in context of full base64 expansion - but =
is just padding, extra information introduced by the conversion, and not part of original Guid data. If you want to go back to a Guid from this base64 converted value, then you will have to re-pad your base64 string until its length is a multiple of 4 - don't ask, just look up base64 if you are interested :)