I try to calculate a problem with 20000 points, so there is a distance matrix with 20000*20000 elements, how can I store this matrix in C++? I use Visual Studio 2008, on a computer with 4 GB of RAM. Any suggestion will be appreciated.
Avoid the brute force approach you're contemplating and try to envision a solution that involves populating a single 20000 element list, rather than an array that covers every possible permutation.
For starters, consider the following simplistic approach which you may be able to improve upon, given the specifics of your problem:
int bestResult = -1; // some invalid value
int bestInner;
int bestOuter;
for ( int outer = 0; outer < MAX; outer++ )
{
for ( int inner = 0; inner < MAX; inner++ )
{
int candidateResult = SomeFunction( list[ inner ], list[ outer ] );
if ( candidateResult > bestResult )
{
bestResult = candidateResult;
bestInner = inner;
bestOuter = outer;
}
}
}
You can represent your matrix as a single large array. Whether it's a good idea to do so is for you to determine.
If you need four bytes per cell, your matrix is only 4*20000*20000, that is, 1.6GB. Any platform should give you that much memory for a single process. Windows gives you 2GiB by default for 32-bit processes -- and you can play with the linker options if you need more. All 32-bit unices I tried gave you more than 2.5GiB.
Your computer should be able to handle 1.6 GB of data (assuming 32bit)
size_t n = 20000;
typedef long dist_type; // 32 bit
std::vector <dist_type> matrix(n*n);
And then use:
dist_type value = matrix[n * y + x];
You can (by using small datatypes), but you probably don't want to.
You are better off using a quad tree (if you need to find the nearest N matches), or a grid of lists (if you want to find all points within R).
In physics, you can just approximate distant points with a field, or a representative amalgamation of points.
There's always a solution. What's your problem?
Is there a reason you need the matrix in memory?
Depending on the complexity of calculations you need to perform you could simply use a function that calculates your distances on the fly. This could even be faster than precalculating ever single distance value if you would only use some of them.
Man you should avoid the n² problem...
Put your 20 000 points into a voxel grid.
Finding closest pair of points should then be something like n log n.
A sparse matrix may be what you looking for. Many problems don't have values in every cell of a matrix. SparseLib++ is a library which allows for effecient matrix operations.
Without more references to the problem at hand (and the use of the matrix), you are going to get a lot of answers... so indulge me.
The classic approach here would be to go with a sparse matrix, however the default value would probably be something like 'not computed', which would require special handling.
Perhaps that you could use a caching approach instead.
Apparently I would say that you would like to avoid recomputing the distances on and on and so you'd like to keep them in this huge matrix. However note that you can always recompute them. In general, I would say that trying to store values that can be recomputed for a speed-off is really what caching is about.
So i would suggest using a distance class that abstract the caching for you.
The basic idea is simple:
- When you request a distance, either you already computed it, or not
- If computed, return it immediately
- If not computed, compute it and store it
- If the cache is full, delete some elements to make room
The practice is a bit more complicated, of course, especially for efficiency and because of the limited size which requires an algorithm for the selection of those elements etc...
So before we delve in the technical implementation, just tell me if that's what you're looking for.
As stated by other answers, you should try hard to either use sparse matrix or come up with a different algorithm that doesn't need to have all the data at once in the matrix.
If you really need it, maybe a library like stxxl might be useful, since it's specially designed for huge datasets. It handles the swapping for you almost transparently.
Thanks a lot for your answers. What I am doing is to solve a vehicle routing problem with about 20000 nodes. I need one matrix for distance, one matrix for a neighbor list (for each node, list all other nodes according to the distance). This list will be used very often to find who can be some candidates. I guess sometimes distances matrix can be ommited if we can calculate when we need. But the neighbor list is not convenient to create every time. the list data type could be int.
To mgb:
how much can a 64 bit windows system help this situation?