import collections
data = [
[1, 2, 3, 4, 5],
[1, 9, 3, 4, 5],
[1, 10, 8, 4, 5],
[1, 12, 13, 7, 5],
[1, 14, 13, 13, 6],
]
def sorted_by_count(lists):
counts = collections.defaultdict(int)
for L in lists:
for n in L:
counts[n] += 1
return [num for num, count in
sorted(counts.items(),
key=lambda k_v: (k_v[1], k_v[0]),
reverse=True)]
print sorted_by_count(data)
Now let's generalize it (to take any iterable, loosen hashable requirement), allow key and reverse parameters (to match sorted), and rename to freq_sorted:
def freq_sorted(iterable, key=None, reverse=False, include_freq=False):
"""Return a list of items from iterable sorted by frequency.
If include_freq, (item, freq) is returned instead of item.
key(item) must be hashable, but items need not be.
*Higher* frequencies are returned first. Within the same frequency group,
items are ordered according to key(item).
"""
if key is None:
key = lambda x: x
key_counts = collections.defaultdict(int)
items = {}
for n in iterable:
k = key(n)
key_counts[k] += 1
items.setdefault(k, n)
if include_freq:
def get_item(k, c):
return items[k], c
else:
def get_item(k, c):
return items[k]
return [get_item(k, c) for k, c in
sorted(key_counts.items(),
key=lambda kc: (-kc[1], kc[0]),
reverse=reverse)]
Example:
>>> import itertools
>>> print freq_sorted(itertools.chain.from_iterable(data))
[1, 5, 4, 13, 3, 2, 6, 7, 8, 9, 10, 12, 14]
>>> print freq_sorted(itertools.chain.from_iterable(data), include_freq=True)
# (slightly reformatted)
[(1, 5),
(5, 4),
(4, 3), (13, 3),
(3, 2),
(2, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (12, 1), (14, 1)]
Roger Pate
2009-12-01 22:54:43