The problem is to derive a formula for determining number of digits a given decimal number could have in a given base.
For example: The decimal number 100006 can be represented by 17,11,9,8,7,6,8 digits in bases 2,3,4,5,6,7,8 respectively.
Well the formula I derived so far is like this : (log10(num) /log10(base)) + 1.
in C/C++ I used this formula to compute the above given results.
long long int size = ((double)log10(num) / (double)log10(base)) + 1.0;
But sadly the formula is not giving correct answer is some cases,like these :
Number 8 in base 2 : 1,0,0,0
Number of digits: 4
Formula returned: 3
Number 64 in base 2 : 1,0,0,0,0,0,0
Number of digits: 7
Formula returned: 6
Number 64 in base 4 : 1,0,0,0
Number of digits: 4
Formula returned: 3
Number 125 in base 5 : 1,0,0,0
Number of digits: 4
Formula returned: 3
Number 128 in base 2 : 1,0,0,0,0,0,0,0
Number of digits: 8
Formula returned: 7
Number 216 in base 6 : 1,0,0,0
Number of digits: 4
Formula returned: 3
Number 243 in base 3 : 1,0,0,0,0,0
Number of digits: 6
Formula returned: 5
Number 343 in base 7 : 1,0,0,0
Number of digits: 4
Formula returned: 3
So the error is by 1 digit.I just want somebody to help me to correct the formula so that it work for every possible cases.
Edit : As per the input specification I have to deal with cases like 10000000000, i.e 10^10,I don't think log10() in either C/C++ can handle such cases ? So any other procedure/formula for this problem will be highly appreciated.