I may be a bit extreme, but I don't like Defensive Programming, I think it's laziness that has introduced the principle.
For this particular example, there is no sense in assert that the pointer is not null. If you want a null pointer, there is no better way to actually enforce it (and document it clearly at the same time) than to use a reference instead. And it's documentation that will actually be enforced by the compiler and does not cost a ziltch at runtime!!
In general, I tend not to use 'raw' types directly. Let's illustrate:
void myFunction(std::string const& foo, std::string const& bar);
What are the possible values of foo
and bar
? Well that's pretty much limited only by what a std::string
may contain... which is pretty vague.
On the other hand:
void myFunction(Foo const& foo, Bar const& bar);
is much better!
- if people mistakenly reverse the order of the arguments, it's detected by the compiler
- each class is solely responsible for checking that the value is right, the users are not burdenned.
I have a tendency to favor Strong Typing. If I have an entry that should be composed only of alphabetical characters and be up to 12 characters, I'd rather create a small class wrapping a std::string
, with a simple validate
method used internally to check the assignments, and pass that class around instead. This way I know that if I test the validation routine ONCE, I don't have to actually worry about all the paths through which that value can get to me > it will be validated when it reaches me.
Of course, that doesn't me that the code should not be tested. It's just that I favor strong encapsulation, and validation of an input is part of knowledge encapsulation in my opinion.
And as no rule can come without an exception... exposed interface is necessarily bloated with validation code, because you never know what might come upon you. However with self-validating objects in your BOM it's quite transparent in general.