In C:
swc *s = malloc(sizeof *s); // assuming you're creating a single instance of swc
if (s)
{
s->offset = malloc(sizeof *(s->offset) * number_of_offset_elements);
s->values = malloc(sizeof *(s->values) * number_of_value_elements);
}
In C++:
try
{
swc *s = new swc;
s->offset = new short[number_of_offset_elements];
s->values = new char[number_of_value_elements];
}
catch(...)
{
...
}
Note that in C++, you might be better off using vectors as opposed to dynamically allocated buffers:
struct swc
{
std::vector<short> offset;
std::vector<char> values;
};
swc *a = new swc;
Question: is values supposed to be an array of individual characters or an array of strings? That would change things a bit.
EDIT
The more I think about it, the less satisfied I am with the C++ answer; the right way to do this sort of thing in C++ (assuming you need dynamically allocated buffers as opposed to vectors, which you probably don't) is to perform the memory allocation for offset and values as part of a constructor within the struct type, and have a destructor deallocate those elements when the struct instance is destroyed (either by a delete
or by going out of scope).
struct swc
{
swc(size_t numOffset = SOME_DEFAULT_VALUE,
size_t numValues = SOME_OTHER_DEFAULT_VALUE)
{
m_offset = new short[numOffset];
m_values = new char[numValues];
}
~swc()
{
delete[] m_offset;
delete[] m_values;
}
short *m_offset;
char *m_values;
};
void foo(void)
{
swc *a = new swc(10,20); // m_offset and m_values allocated as
// part of the constructor
swc b; // uses default sizes for m_offset and m_values
...
a->m_offset[0] = 1;
a->m_values[0] = 'a';
b.m_offset[0] = 2;
b.m_values[0] = 'b';
...
delete a; // handles freeing m_offset and m_values
// b's members are deallocated when it goes out of scope
}