You're question is a little vague, but there's an interesting statistical technique that may be what you're thinking off called Principal Component Analysis which does something similar (and incidentally plotting the results from which was my first real world programming task)
It's a neat, but clever technique which is remarkably widely applicable. I applied it to similarities between protein amino acid sequences, but I've seen it used for analysis everything from relationships between bacteria to malt whisky.
Consider a graph of some attributes of a collection of things where one has two independent variables - to analyse the relationship on these one obviously plots on two dimensions and you might see a scatter of points. if you've three variable you can use a 3D graph, but after that one starts to run out of dimensions.
In PCA one might have dozens or even a hundred or more independent factors, all of which need to be plotted on perpendicular axis. Using PCA one does this, then analyses the resultant multidimensional graph to find the set of two or three axis within the graph which contain the largest amount of information. For example the first Principal Coordinate will be a composite axis (i.e. at some angle through n-dimensional space) which has the most information when the points are plotted along it. The second axis is perpendicular to this (remember this is n-dimensional space, so there's a lot of perpendiculars) which contains the second largest amount of information etc.
Plotting the resultant graph in 2D or 3D will typically give you a visualization of the data which contains a significant amount of the information in the original dataset. It's usual for the technique to be considered valid to be looking for a representation that contains around 70% of the original data - enough to visualize relationships with some confidence that would otherwise not be apparent in the raw statistics. Notice that the technique requires that all factors have the same weight, but given that it's an extremely widely applicable method that deserves to be more widely know and is available in most statistical packages (I did my work on an ICL 2700 in 1980 - which is about as powerful as an iPhone)