Big O notation give you the complexity of an algoritm in the worst case, and is mainly usefull to know how the algoritm will grow in execution time when the ammount of data that have to proccess grow up. For example (C-style syntax, this is not important):
List<int> ls = new List<int>(); (1) O(1)
for (int i = 0; i < ls.count; i++) (2) O(1)
foo(i); (3) O(log n) (efficient function)
Cost analysis:
(1) cost: O(1), constant cost
(2) cost: O(1), (int i = 0;)
O(1), (i < ls.count)
O(1), (i++)
---- total: O(1) (constant cost), but it repeats n times (ls.count)
(3) cost: O(log n) (assume it, just an example),
but it repeats n times as it is inside the loop
So, in asymptotic notation, it will have a cost of: O(n log n)
(not as efficient) wich in this example is a reasonable result, but take this example:
List<int> ls = new List<int>(); (1) O(1)
for (int i = 0; i < ls.count; i++) (2) O(1)
if ( (i mod 2) == 0) ) (*) O(1) (constant cost)
foo(i); (3) O(log n)
Same algorithm but with a little new line with a condition. In this case asymptotic notation will chose the worst case and will conclude same results as above O(n log n)
, when is easily detectable that the (3) step will execute only half the times.
Data an so are only examples and may not be exact, just trying to illustrate the behaviour of the Big O notation. It mainly gives you the behaviour of your algoritm when data grow up (you algoritm will be linear, exponencial, logarithmical, ...), but this is not what everybody knows as "efficiency", or almost, this is not the only "efficiency" meaning.
However, this methot can detect "impossible of process" (sorry, don't know the exact english word) algoritms, this is, algoritms that will need a gigantic amount of time to be processed in its early steps (think in factorials, for example, or very big matix).
If you want a real world efficiency study, may be you prefere catching up some real world data and doing a real world benchmark of the beaviour of you algoritm with this data. It is not a mathematical style, but it will be more precise in the majority of cases (but not in the worst case! ;) ).
Hope this helps.