Since you've marked this as C++, it's worth mentioning that there is a somewhat better way that the C-style macro:
template <class T, size_t N>
size_t countof(const T &array[N]) { return N; }
This, however, does not give you a compile-time constant, so you can't do something like:
int a[20];
char x[countof(a)];
If you really want to support that, there is a way, originally invented by Ivan Johnson, AFAIK:
#define COUNTOF(x) ( \
0 * sizeof( reinterpret_cast<const ::Bad_arg_to_COUNTOF*>(x) ) + \
0 * sizeof( ::Bad_arg_to_COUNTOF::check_type((x), &(x)) ) + \
sizeof(x) / sizeof((x)[0]) )
class Bad_arg_to_COUNTOF
{
public:
class Is_pointer;
class Is_array {};
template<typename T>
static Is_pointer check_type(const T*, const T* const*);
static Is_array check_type(const void*, const void*);
};
This uses sizeof(x)/sizeof(x[0]) to compute the size, just like the C macro does, so it gives a compile-time constant. The difference is that it first uses some template magic to cause a compile error if what you've passed isn't the name of an array. It does that by overloading check_type to return an incomplete type for a pointer, but a complete type for an array. Then (the really tricky part) it doesn't actually call that function at all -- it just takes the size of the type the function would return, which is zero for the overload that returns the complete type, but not allowed (forcing a compile error) for the incomplete type.
IMO, that's a pretty cool example of template meta programming -- though in all honesty, the result is kind of pointless. You really only need that size as a compile time constant if you're using arrays, which you should normally avoid in any case. Using std::vector
, it's fine to supply the size at run-time (and resize the vector when/if needed).