Hi,
Consider this simple situation:
A.h
class A {
public:
virtual void a() = 0;
};
B.h
#include <iostream>
class B {
public:
virtual void b() {std::cout << "b()." << std::endl;};
};
C.h
#include "A.h"
#include "B.h"
class C : public B, public A {
public:
void a() {std::cout << "a() in C." << std::endl;};
};
int main() {
B* b = new C();
((A*) b)->a(); // Output: b().
A* a = new C();
a->a(); // Output:: a() in C.
return 0;
}
In other words:
- A is a pure virtual class.
- B is a class with no super class and one non-pure virtual function.
- C is a subclass of A and B and overrides A's pure virtual function.
What surprises me is the first output i.e.
((A*) b)->a(); // Output: b().
Although I call a() in the code, b() is invoked. My guess is that it is related to the fact that the variable b is a pointer to class B which is not a subclass of class A. But still the runtime type is a pointer to a C instance.
What is the exact C++ rule to explain this, from a Java point of view, weird behaviour?