I think the best way to think about this is in terms of program state. You don't want a failed operation to damage program state. This paper describes the concept of "Exception Safety".
In general, you first need to decide what level of exception safety a function needs to guarantee. The levels are
- Basic Guarnantee
- Strong Guarantee
- NoThrow Guarantee
The basic Guarantee simply means that in the face of an exception or other error, no resources are leaked, the strong guarantee says that the program state is rolled back to before the exception, and nothrow methods never throw exceptions.
I personally use exceptions when an unexpected, runtime failure occurs. Unexpected means to me that such a failure should not occur in the normal course of operations. Runtime means that the error is due to the state of some external component outside of my control, as opposed to due to logic errors on my part. I use ASSERT()'s to catch logic errors, and I use boolean return values for expected errors.
Why? ASSERT isn't compiled into release code, so I don't burden my users with error checking for my own failures. That's what unit tests and ASSERTS are for. Booleans because throwing an exception can give the wrong message. Exceptions can be expensive, too. If I throw exceptions in the normal course of application execution, then I can't use the MS Visual Studio debugger's excellent "Catch on thrown" exception feature, where I can have the debugger break a program at the point that any exception is thrown, rather than the default of only stopping at unhandled (crashing) exceptions.
To see a C++ technique for the basic Guarantee, google "RAII" (Resource Acquisition is Initialiation). It's a technique where you wrap a resource in an object whose constructor allocates the resource and whos destructor frees the resource. Since C++ exceptions unwind the stack, it guarantees that resources are freed in the face of exceptions. You can use this technique to roll back program state in the face of an exception. Just add a "Commit" method to an object, and if an object isn't committed before it is destroyed, run the "Rollback" operation that restores program state in the destructor.