Your problem's quite standard in the field.
Firstly,
you need to calibrate your camera. This can be done offline (makes life much simpler) or online through self-calibration.
Calibrate it offline - please.
Secondly,
Once you have the calibration matrix of the camera K, determine the projection matrix of the camera in a successive scene (you need to use parallax as mentioned by others). This is described well in this OpenCV tutorial.
You'll have to use the GPS information to find the relative orientation between the cameras in the successive scenes (that might be problematic due to noise inherent in most GPS units), i.e. the R and t mentioned in the tutorial or the rotation and translation between the two cameras.
Once you've resolved all that, you'll have two projection matrices --- representations of the cameras at those successive scenes. Using one of these so-called camera matrices, you can "project" a 3D point M on the scene to the 2D image of the camera on to pixel coordinate m (as in the tutorial).
We will use this to triangulate the real 3D point from 2D points found in your video.
Thirdly,
use an interest point detector to track the same point in your video which lies on the object of interest. There are several detectors available, I recommend SURF since you have OpenCV which also has several other detectors like Shi-Tomasi corners, Harris, etc.
Fourthly,
Once you've tracked points of your object across the sequence and obtained the corresponding 2D pixel coordinates you must triangulate for the best fitting 3D point given your projection matrix and 2D points.
The above image nicely captures the uncertainty and how a best fitting 3D point is computed. Of course in your case, the cameras are probably in front of each other!
Finally,
Once you've obtained the 3D points on the object, you can easily compute the Euclidean distance between the camera center (which is the origin in most cases) and the point.
Note
This is obviously not easy stuff but it's not that hard either. I recommend Hartley and Zisserman's excellent book Multiple View Geometry which has described everything above in explicit detail with MATLAB code to boot.
Have fun and keep asking questions!