After reading this article on writing polyvariadic functions in Haskell, I tried to write some of my own.
At first I thought I'd try to generalize it - so I could have a function that returned variadic functions by collapsing arguments as given.
{-# OPTIONS -fglasgow-exts #-}
module Collapse where
class Collapse a r | r -> a where
collapse :: (a -> a -> a) -> a -> r
instance Collapse a a where
collapse _ = id
instance (Collapse a r) => Collapse a (a -> r) where
collapse f a a' = collapse f (f a a')
However, the compiler didn't like that:
Collapse.hs:5:9:
Functional dependencies conflict between instance declarations:
instance Collapse a a -- Defined at Collapse.hs:5:9-20
instance (Collapse a r) => Collapse a (a -> r)
-- Defined at Collapse.hs:7:9-43
If I went back and added a wrapper type for the final result, however, it worked:
module Collapse where
class Collapse a r | r -> a where
collapse :: (a -> a -> a) -> a -> r
data C a = C a
instance Collapse a (C a) where
collapse _ = C . id
instance (Collapse a r) => Collapse a (a -> r) where
collapse f a a' = collapse f (f a a')
sum :: (Num a, Collapse a r) => a -> r
sum = collapse (+)
Once I made this change, it compiled fine, and I could use the collapse
function in ghci
.
ghci> let C s = Collapse.sum 1 2 3 in s
6
I'm not sure why the wrapper type is required for the final result. If anyone could explain that, I'd highly appreciate it. I can see that the compiler's telling me that it's some issue with the functional dependencies, but I don't really grok the proper use of fundeps yet.
Later, I tried to take a different tack, and try and define a variadic function generator for functions that took a list and returned a value. I had to do the same container trick, and also allow UndecidableInstances
.
{-# OPTIONS -fglasgow-exts #-}
{-# LANGUAGE UndecidableInstances #-}
module Variadic where
class Variadic a b r | r -> a, r -> b where
variadic :: ([a] -> b) -> r
data V a = V a
instance Variadic a b (V b) where
variadic f = V $ f []
instance (Variadic a b r) => Variadic a b (a -> r) where
variadic f a = variadic (f . (a:))
list :: Variadic a [a] r => r
list = variadic . id
foldl :: (Variadic b a r) => (a -> b -> a) -> a -> r
foldl f a = variadic (Prelude.foldl f a)
Without allowing UndecidableInstances
the compiler complained that my instance declarations were illegal:
Variadic.hs:7:0:
Illegal instance declaration for `Variadic a b (V b)'
(the Coverage Condition fails for one of the functional dependencies;
Use -XUndecidableInstances to permit this)
In the instance declaration for `Variadic a b (V b)'
Variadic.hs:9:0:
Illegal instance declaration for `Variadic a b (a -> r)'
(the Coverage Condition fails for one of the functional dependencies;
Use -XUndecidableInstances to permit this)
In the instance declaration for `Variadic a b (a -> r)'
However, once it compiled, I could successfully use it in ghci:
ghci> let V l = Variadic.list 1 2 3 in l
[1,2,3]
ghci> let vall p = Variadic.foldl (\b a -> b && (p a)) True
ghci> :t vall
vall :: (Variadic b Bool r) => (b -> Bool) -> r
ghci> let V b = vall (>0) 1 2 3 in b
True
I guess what I'm looking for is an explanation of why the container type for the final value is necessary, as well as why all the various functional dependencies are necessary.
Also, this seemed odd:
ghci> let vsum = Variadic.foldl (+) 0
<interactive>:1:10:
Ambiguous type variables `a', `r' in the constraint:
`Variadic a a r'
arising from a use of `Variadic.foldl' at <interactive>:1:10-29
Probable fix: add a type signature that fixes these type variable(s)
<interactive>:1:10:
Ambiguous type variable `a'in the constraint:
`Num a' arising from the literal `0' at <interactive>:1:29
Probable fix: add a type signature that fixes these type variable(s)
ghci> let vsum' = Variadic.foldl (+)
ghci> :t vsum'
(Num a, Variadic a a r) => t -> a -> r
ghci> :t vsum' 0
(Num a, Variadic a a r) => a -> r
ghci> let V s = vsum' 0 1 2 3 in s
6
I'm guessing that's fallout from allowing UndecidableInstances
, but I don't know, and I'd like to better understand what's going on.