This is not even remotely a programming problem. But I'll answer it anyway.
The first is a sum over j, for EACH value of i. The second is a sum over i, for EACH value of j.
So essentially, one of these constraint sets requires that the sum across the rows of the matrix x_{i,j} matrix must be unity. The other constraint is a requirement that the sum down the columns of that matrix must be unity.
(edit) It seems that we are still not being clear here. Consider the matrix
[0 1]
[0 1]
One must agree that the sum across the rows of this matrix is 1 for each row. However, when you form the sum of the elements of the first column, it is zero, and the sum of the elements in the second column, we find 2.
Now, consider a different matrix.
[0 1]
[1 0]
See that here, the sum over the rows or down the columns is always 1.