Depends on Context:
Like many things in C++, static
means different things depending on its context.
It's very common in C++ for the same word to mean different things depending on its context.
For example:
*
is used for multiplication, dereferencing a pointer, and creating pointers.
&
is used to get the address of variables, to declare a reference, and as a bitwise AND operator.
Global use of static:
If you declare a function or variable as static outside of a class and in global scope, it is specific to only that file. If you try to use that variable or function in a different file (via a forward declaration) you will get a linking error.
Example:
a.cpp:
static void fn()
{
cout<<"hello a!"<<endl;
}
b.cpp:
void fn();
void gn()
{
fn();//causes linking error
}
This feature allows you to use a function that no other file will ever see, that way you don't cause possible linker errors of a symbol defined multiple times. The preferred method to do this is with anonymous namespaces though:
a.cpp:
namespace
{
void fn() // will be static to a.cpp
{
cout<<"hello a!"<<endl;
}
}
Inside of a class use of static:
If you declare a function or variable as static inside of a class (or struct), it is a class function or class variable. This means that there is only one for that whole class. A class function can only use class variables. A class variable is shared amongst all instances of that class.
class C
{
public:
static void fn()
{
y = 4;//<--- compiling error
// can't access member variable within a static function.
}
int y;
}
This is a great feature to use if you have something that is specific to the class of your objects, but not specific to an instance.
Inside a function use of static:
If you declare a variable as static inside of a function, you can consider that the variable value will persist upon calls. It will only be initialized once.
Example:
//Will print 0, then 1, then 2, ...
void persistentPrintX()
{
static int x = 0;
cout << x << endl;
x++;
}
I personally try to avoid this, and you probably should to. It is not good to have global state. It is better to have functions that given the same input guarantees the same output.
Just like in the English language:
The concept of context sensitive meaning is not specific to C++, you can even see it in the English language.
- I am going to
screen
a movie (Means showing the movie)
- The
screen
on the TV is broken (Means a part of the TV)
Other meanings in other programming languages:
Depending on the programming language there can be a different meaning, but the first thing most people think of when you say static
is a class variable/function vs a member variable/function.