Here's approximate pseudo-code to do it. The basic idea is walk the tree layer-by-layer, printing all the node in each layer on one line. Each node is separated by twice as much space as the nodes below it. Since the tree is not all of uniform depth, it is artificially padded with virtual nodes to take up the blank spaces where nodes don't exist.
measure the depth of the tree, call that D
have two queues, called Q1 and Q2
enque the top node of the tree in Q1
for (i = D; --i>=0; ){
foreach node in Q1 {
on first iteration of this inner loop, print 2^i - 1 spaces,
else print 2^(i+1) - 1 spaces.
if node == null print blank
else print node.value
if node.left exists enque node.left in Q2
else enque null in Q2
if node.right exists enque node.right in Q2
else enque null in Q2
}
copy Q2 to Q1
clear Q2
print end-of-line
}
Each space that is printed is the width of one numeric field. Suppose the tree has depth D = 4. Then the printing goes like this:
// it looks like this, and the space sequences are
i = 3: -------n 7
i = 2: ---n-------n 3 7
i = 1: -n---n---n---n 1 3 3 3
i = 0: n-n-n-n-n-n-n-n 0 1 1 1 1 1 1 1