Disk IO is definitely a problem here, you just can't do any significant amount of disk IO activity when you're backing it up with a single spindle. The 32MB cache on a single SATA drive is going to be saturated just by your Host and a couple of Guest OS's ticking over. If you look at the disk queue length counter in your Ubuntu Host OS you should see that it is high (anything above 1 on this system with 2 drive for any length of time means something is waiting for that disk).
When I'm sizing infrastructure for VM's I generally take a ballpark of 30-50 IOPS per VM as an average, and that's for systems that do not exercise the disk subsystem very much. For systems that don't require a lot of IO activity you can drop down a bit but the IO patterns for build systems will be heavily biased towards lots of very random fairly small reads. To compound the issue you want a lot of those VM's building concurrently which will drive contention for the disk through the roof. Overall disk bandwidth is probably not a big concern (that SATA drive can probably push 70-100Meg/sec when the IO pattern is totally sequential) but when the files are small and scattered you are IO bound by the limits of the spindle which will be about 70-100 IO per second on a 7.2k SATA. A host OS running a Type 2 Hypervisor like VMware Server with a single guest will probably hit that under a light load.
My recommendation would be to build a RAID 10 array with smaller and ideally faster drives. 10k SAS drives will give you 100-150 IOPs each so a pack of 4 can handle 600 read IOPS and 300 write IOPs before topping out. Also make sure you align all of the data partitions for the drive hosting the VMDK's and within the Guest OS's if you are putting the VM files on a RAID array. For workloads like these that will give you a 20-30% disk performance improvement. Avoid RAID 5 for something like this, space is cheap and the write penalty on RAID 5 means you need 4 drives in a RAID 5 pack to equal the write performance of a single drive.
One other point I'd add is that VMware Server is not a great Hypervisor in terms of performance, if at all possible move to a Type 1 Hypervisor (like ESXi v4, it's also free). It's not trivial to set up and you lose the Host OS completely so that might be an issue but you'll see far better IO performance across the board particularly for disk and network traffic.
Edited to respond to your comment.
1) To see whether you actually have a problem on your existing Ubuntu host.
I see you've tried dstat, I don't think it gives you enough detail to understand what's happening but I'm not familiar with using it so I might be wrong. Iostat will give you a good picture of what is going on - this article on using iostat will help you get a better picture of the actual IO pattern hitting the disk - http://bhavin.directi.com/iostat-and-disk-utilization-monitoring-nirvana/ . The avgrq-sz and avgwq-sz are the raw indicators of how many requests are queued. High numbers are generally bad but what is actually bad varies with the disk type and RAID geometry. What you are ultimately interested in is seeing whether your disk IO's are spending more\increasing time in the queue than in actually being serviced. The calculation (await-svctim)/await*100
really tells you whether your disk is struggling to keep up, above 50% and your IO's are spending as long queued as being serviced by the disk(s), if it approaches 100% the disk is getting totally slammed. If you do find that the host is not actually stressed and VMware Server is actually just lousy (which it could well be, I've never used it on a Linux platform) then you might want to try one of the alternatives like VirtualBox before you jump onto ESXi.
2) To figure out what you need.
Baseline the IO requirements of a typical build on a system that has good\acceptable performance - on Windows look at the IOPS counters - Disk Reads/sec and Disk Writes/sec counters and make sure the average queue length is <1. You need to know the peak values for both while the system is loaded, instantaneous peaks could be very high if everything is coming from disk cache so watch for sustained peak values over the course of a minute or so. Once you have those numbers you can scope out a disk subsystem that will deliver what you need. The reason you need to look at the IO numbers is that they reflect the actual switching that the drive heads have to go through to complete your reads and writes (the IO's per second, IOPS) and unless you are doing large file streaming or full disk backups they will most accurately reflect the limits your disk will hit when under load.
Modern disks can sustain approximately the following:
- 7.2k SATA drives - 70-100 IOPS
- 10k SAS drives - 120-150 IOPS
- 15k SAS drives - 150-200 IOPS
Note these are approximate numbers for typical drives and represent the saturated capability of the drives under maximum load with unfavourable IO patterns. This is designing for worst case, which is what you should do unless you really know what you are doing.
RAID packs allow you to parallelize your IO workload and with a decent RAID controller an N drive RAID pack will give you N*(Base IOPS for 1 disk) for read IO. For write IO there is a penalty caused by the RAID policy - RAID 0 has no penalty, writes are as fast as reads. RAID 5 requires 2 reads and 2 writes per IO (read parity, read existing block, write new parity, write new block) so it has a penalty of 4. RAID 10 has a penalty of 2 (2 writes per IO). RAID 6 has a penalty of 5. To figure out how many IOPS you need from a RAID array you take the basic read IOPS number your OS needs and add to that the product of the write IOPS number the OS needs and the relevant penalty factor.
3) Now work out the structure of the RAID array that will meet your performance needs
If your analysis of a physical baseline system tells you that you only need 4\5 IOPS then your single drive might be OK. I'd be amazed if it does but don't take my word for it - get your data and make an informed decision.
Anyway let's assume you measured 30 read IOPS and 20 write IOPS during your baseline exercise and you want to be able to support 8 instances of these build systems as VM's. To deliver this your disk subsystem will need to be able to support 240 read IOPS and 160 write IOPS to the OS. Adjust your own calculations to suit the number of systems you really need.
If you choose RAID 10 (and I strongly encourage it, RAID 10 sacrifices capacity for performance but when you design for enough performance you can size the disks to get the capacity you need and the result will usually be cheaper than RAID5 unless your IO pattern involves very few writes) Your disks need to be able to deliver 560 IOPS in total (240 for read, and 320 for write in order to account for the RAID 10 write penalty factor of 2).
This would require:
- 4 15k SAS drives
- 6 10k SAS drives (round up, RAID 10 requires an even no of drives)
- 8 7.2k SATA drives
If you were to choose RAID 5 you would have to adjust for the increased write penalty and will therefore need 880 IOPS to deliver the performance you want.
That would require:
- 6 15k SAS drives
- 8 10k SAS drives
- 14 7.2k SATA drives
You'll have a lot more space this way but it will cost almost twice as much because you need so many more drives and you'll need a fairly big box to fit those into. This is why I strongly recommend RAID 10 if performance is any concern at all.
Another option is to find a good SSD (like the Intel X-25E, not the X-25M or anything cheaper) that has enough storage to meet your needs. Buy two and set them up for RAID 1, SSD's are pretty good but their failure rates (even for drives like the X-25E's) are currently worse than rotating disks so unless you are prepared to deal with a dead system you want RAID 1 at a minimum. Combined with a good high end controller something like the X-25E will easily sustain 6k IOPS in the real world, that's the equivalent of 30 15k SAS drives. SSD's are quite expensive per GB of capacity but if they are used appropriately they can deliver much more cost effective solutions for tasks that are IO intensive.