I suspect someone should tell you why it could not be a good idea to not use overloading or specialization. Consider:
template<class T> int foo(T a) {
if(isAString<T>()) {
return a.length();
} else {
return a;
}
}
You might think on a first sight that it will work for int
too, because it will only try to call length
for strings. But that intuition is wrong: The compiler still checks the string branch, even if that branch is not taken at runtime. And it will find you are trying to call a member function on non-classes if T
is an int.
That's why you should separate the code if you need different behavior. But better use overloading instead of specialization, since it's easier to get a clue how things work with it.
template<class T> int foo(T a) {
return a;
}
int foo(std::string const& a) {
return a.length();
}
You have also better separated the code for different paths of behavior. It's not all anymore clued together. Notice that with overloading, the parameters may have different type forms and the compiler will still use the correct version if both match equally well, as is the case here: One can be a reference, while the other can not.