Following Hartley/Zisserman's Multiview Geometery, Algorithm 12: The optimal triangulation method (p318), I got the corresponding image points xhat1 and xhat2 (step 10). In step 11, one needs to compute the 3D point Xhat. One such method is Direct Linear Transform (DLT), mentioned in 12.2 (p312) and 4.1 (p88).
The homogenous method (DLT), p312-313, states that it finds a solution as the unit singular vector corresponding to the smallest singular value of A, thus,
A = [xhat1(1) * P1(3,:)' - P1(1,:)' ;
xhat1(2) * P1(3,:)' - P1(2,:)' ;
xhat2(1) * P2(3,:)' - P2(1,:)' ;
xhat2(2) * P2(3,:)' - P2(2,:)' ];
[Ua Ea Va] = svd(A);
Xhat = Va(:,end);
plot3(Xhat(1),Xhat(2),Xhat(3), 'r.');
However, A is a 16x1 matrix, resulting in a Va that is 1x1.
What am I doing wrong (and a fix) in getting the 3D point?
For what its worth sample data:
xhat1 =
1.0e+009 *
4.9973
-0.2024
0.0027
xhat2 =
1.0e+011 *
2.0729
2.6624
0.0098
P1 =
699.6674 0 392.1170 0
0 701.6136 304.0275 0
0 0 1.0000 0
P2 =
1.0e+003 *
-0.7845 0.0508 -0.1592 1.8619
-0.1379 0.7338 0.1649 0.6825
-0.0006 0.0001 0.0008 0.0010
A = <- my computation
1.0e+011 *
-0.0000
0
0.0500
0
0
-0.0000
-0.0020
0
-1.3369
0.2563
1.5634
2.0729
-1.7170
0.3292
2.0079
2.6624
Update Working code for section xi in algorithm
% xi
A = [xhat1(1) * P1(3,:) - P1(1,:) ;
xhat1(2) * P1(3,:) - P1(2,:) ;
xhat2(1) * P2(3,:) - P2(1,:) ;
xhat2(2) * P2(3,:) - P2(2,:) ];
A(1,:) = A(1,:)/norm(A(1,:));
A(2,:) = A(2,:)/norm(A(2,:));
A(3,:) = A(3,:)/norm(A(3,:));
A(4,:) = A(4,:)/norm(A(4,:));
[Ua Ea Va] = svd(A);
X = Va(:,end);
X = X / X(4); % 3D Point