I have the matrix system:
A x B = C
A
is a
by n
and B
is n
by b
. Both A
and B
are unknown but I have partial information about C
(I have some values in it but not all) and n
is picked to be small enough that the system is expected to be over constrained. It is not required that all rows in A
or columns in B
are over constrained.
I'm looking for something like least squares linear regression to find a best fit for this system (Note: I known there will not be a single unique solution but all I want is one of the best solutions)
To make a concrete example; all the a's and b's are unknown, all the c's are known, and the ?'s are ignored. I want to find a least squares solution only taking into account the know c's.
[ a11, a12 ] [ c11, c12, c13, c14, ? ]
[ a21, a22 ] [ b11, b12, b13, b14, b15] [ c21, c22, c23, c24, c25 ]
[ a31, a32 ] x [ b21, b22, b23, b24, b25] = C ~= [ c31, c32, c33, ?, c35 ]
[ a41, a42 ] [ ?, ?, c43, c44, c45 ]
[ a51, a52 ] [ c51, c52, c53, c54, c55 ]
Note that if B is trimmed to b11 and b21 only and the unknown row 4 chomped out, then this is almost a standard least squares linear regression problem.