Pyparsing can be used to parse mathematical expressions. In particular, fourFn.py
shows how to parse basic arithmetic expressions. Below, I've rewrapped fourFn into a numeric parser class for easier reuse.
from __future__ import division
from pyparsing import (Literal,CaselessLiteral,Word,Combine,Group,Optional,
ZeroOrMore,Forward,nums,alphas,oneOf)
import math
import operator
__author__='Paul McGuire'
__version__ = '$Revision: 0.0 $'
__date__ = '$Date: 2009-03-20 $'
__source__='''http://pyparsing.wikispaces.com/file/view/fourFn.py
http://pyparsing.wikispaces.com/message/view/home/15549426
'''
__note__='''
All I've done is rewrap Paul McGuire's fourFn.py as a class, so I can use it
more easily in other places.
'''
class NumericStringParser(object):
'''
Most of this code comes from the fourFn.py pyparsing example
'''
def pushFirst(self, strg, loc, toks ):
self.exprStack.append( toks[0] )
def pushUMinus(self, strg, loc, toks ):
if toks and toks[0]=='-':
self.exprStack.append( 'unary -' )
def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal( "." )
e = CaselessLiteral( "E" )
fnumber = Combine( Word( "+-"+nums, nums ) +
Optional( point + Optional( Word( nums ) ) ) +
Optional( e + Word( "+-"+nums, nums ) ) )
ident = Word(alphas, alphas+nums+"_$")
plus = Literal( "+" )
minus = Literal( "-" )
mult = Literal( "*" )
div = Literal( "/" )
lpar = Literal( "(" ).suppress()
rpar = Literal( ")" ).suppress()
addop = plus | minus
multop = mult | div
expop = Literal( "^" )
pi = CaselessLiteral( "PI" )
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(pi|e|fnumber|ident+lpar+expr+rpar).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar+expr+rpar)
).setParseAction(self.pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of
# "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-right
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + ZeroOrMore( ( expop + factor ).setParseAction( self.pushFirst ) )
term = factor + ZeroOrMore( ( multop + factor ).setParseAction( self.pushFirst ) )
expr << term + ZeroOrMore( ( addop + term ).setParseAction( self.pushFirst ) )
# addop_term = ( addop + term ).setParseAction( self.pushFirst )
# general_term = term + ZeroOrMore( addop_term ) | OneOrMore( addop_term)
# expr << general_term
self.bnf = expr
# map operator symbols to corresponding arithmetic operations
epsilon = 1e-12
self.opn = { "+" : operator.add,
"-" : operator.sub,
"*" : operator.mul,
"/" : operator.truediv,
"^" : operator.pow }
self.fn = { "sin" : math.sin,
"cos" : math.cos,
"tan" : math.tan,
"abs" : abs,
"trunc" : lambda a: int(a),
"round" : round,
"sgn" : lambda a: abs(a)>epsilon and cmp(a,0) or 0}
def evaluateStack(self, s ):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack( s )
if op in "+-*/^":
op2 = self.evaluateStack( s )
op1 = self.evaluateStack( s )
return self.opn[op]( op1, op2 )
elif op == "PI":
return math.pi # 3.1415926535
elif op == "E":
return math.e # 2.718281828
elif op in self.fn:
return self.fn[op]( self.evaluateStack( s ) )
elif op[0].isalpha():
return 0
else:
return float( op )
def eval(self,num_string,parseAll=True):
self.exprStack=[]
results=self.bnf.parseString(num_string,parseAll)
val=self.evaluateStack( self.exprStack[:] )
return val
You can use it like this:
nsp=NumericStringParser()
result=nsp.eval('2^4')
print(result)
# 16.0