The accepted answer by Michael Burr is quite good in explaining the technique, but from the comments it seems that besides the 'how' you are interested in the 'why'. The main reasons to provide operator overloads for a given type are improving readability and providing a required interface.
If you have a type for which there is a single commonly understood meaning for an operator in the domain of your problem, then providing that as an operator overload makes code more readable:
std::complex<double> a(1,2), b(3,4), c( 5, 6 );
std::complex<double> d = a + b + c; // compare to d = a.add(b).add(c);
std::complex<double> e = (a + d) + (b + c); // e = a.add(d).add( b.add(c) );
If your type has a given property that will naturally be expressed with an operator, you can overload that particular operator for your type. Consider for example, that you want to compare your objects for equality. Providing operator==
(and operator!=
) can give you a simple readable way of doing so. This has the advantage of fulfilling a common interface that can be used with algorithms that depend on equality:
struct type {
type( int x ) : value(x) {}
int value;
};
bool operator==( type const & lhs, type const & rhs )
{ return lhs.value == rhs.value; }
bool operator!=( type const & lhs, type const & rhs )
{ return !lhs == rhs; }
std::vector<type> getObjects(); // creates and fills a vector
int main() {
std::vector<type> objects = getObjects();
type t( 5 );
std::find( objects.begin(), objects.end(), t );
}
Note that when the find
algorithm is implemented, it depends on ==
being defined. The implementation of find will work with primitive types as well as with any user defined type that has an equality operator defined. There is a common single interface that makes sense. Compare that with the Java version, where comparison of object types must be performed through the .equals
member function, while comparing primitive types can be done with ==
. By allowing you to overload the operators you can work with user defined types in the same way that you can with primitive types.
The same goes for ordering. If there is a well defined (partial) order in the domain of your class, then providing operator<
is a simple way of implementing that order. Code will be readable, and your type will be usable in all situations where a partial order is required, as inside associative containers:
bool operator<( type const & lhs, type const & rhs )
{
return lhs < rhs;
}
std::map<type, int> m; // m will use the natural `operator<` order
A common pitfall when operator overloading was introduced into the language is that of the 'golden hammer' Once you have a golden hammer everything looks like a nail, and operator overloading has been abused.
It is important to note that the reason for overloading in the first place is improving readability. Readability is only improved if when a programmer looks at the code, the intentions of each operation are clear at first glance, without having to read the definitions. When you see that two complex numbers are being added like a + b
you know what the code is doing. If the definition of the operator is not natural (you decide to implement it as adding only the real part of it) then code will become harder to read than if you had provided a (member) function. If the meaning of the operation is not well defined for your type the same happens:
MyVector a, b;
MyVector c = a + b;
What is c
? Is it a vector where each element i
is the sum of of the respective elements from a
and b
, or is it a vector created by concatenating the elements of a
before the elements of b
. To understand the code, you would need to go to the definition of the operation, and that means that overloading the operator is less readable than providing a function:
MyVector c = append( a, b );
The set of operators that can be overloaded is not restricted to the arithmetic and relational operators. You can overload operator[]
to index into a type, or operator()
to create a callable object that can be used as a function (these are called functors) or that will simplify usage of the class:
class vector {
public:
int operator[]( int );
};
vector v;
std::cout << v[0] << std::endl;
class matrix {
public:
int operator()( int row, int column );
// operator[] cannot be overloaded with more than 1 argument
};
matrix m;
std::cout << m( 3,4 ) << std::endl;
There are other uses of operator overloading. In particular operator,
can be overloaded in really fancy ways for metaprogramming purposes, but that is probably much more complex than what you really care for now.