Edit: The code here still has some bugs in it, and it could do better in the performance department, but instead of trying to fix this, for the record I took the problem over to the Intel discussion groups and got lots of great feedback, and if all goes well a polished version of Atomic float will be included in a near future release of Intel's Threading Building Blocks
Ok here's a tough one, I want an Atomic float, not for super-fast graphics performance, but to use routinely as data-members of classes. And I don't want to pay the price of using locks on these classes, because it provides no additional benefits for my needs.
Now with intel's tbb and other atomic libraries I've seen, integer types are supported, but not floating points. So I went on and implemented one, and it works... but I'm not sure if it REALLY works, or I'm just very lucky that it works.
Anyone here knows if this is not some form of threading heresy?
typedef unsigned int uint_32;
struct AtomicFloat
{
private:
tbb::atomic<uint_32> atomic_value_;
public:
template<memory_semantics M>
float fetch_and_store( float value )
{
const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::fetch_and_store<M>((uint_32&)value);
return reinterpret_cast<const float&>(value_);
}
float fetch_and_store( float value )
{
const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::fetch_and_store((uint_32&)value);
return reinterpret_cast<const float&>(value_);
}
template<memory_semantics M>
float compare_and_swap( float value, float comparand )
{
const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::compare_and_swap<M>((uint_32&)value,(uint_32&)compare);
return reinterpret_cast<const float&>(value_);
}
float compare_and_swap(float value, float compare)
{
const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::compare_and_swap((uint_32&)value,(uint_32&)compare);
return reinterpret_cast<const float&>(value_);
}
operator float() const volatile // volatile qualifier here for backwards compatibility
{
const uint_32 value_ = atomic_value_;
return reinterpret_cast<const float&>(value_);
}
float operator=(float value)
{
const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::operator =((uint_32&)value);
return reinterpret_cast<const float&>(value_);
}
float operator+=(float value)
{
volatile float old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<float&>(atomic_value_);
new_value_ = old_value_ + value;
} while(compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_);
}
float operator*=(float value)
{
volatile float old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<float&>(atomic_value_);
new_value_ = old_value_ * value;
} while(compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_);
}
float operator/=(float value)
{
volatile float old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<float&>(atomic_value_);
new_value_ = old_value_ / value;
} while(compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_);
}
float operator-=(float value)
{
return this->operator+=(-value);
}
float operator++()
{
return this->operator+=(1);
}
float operator--()
{
return this->operator+=(-1);
}
float fetch_and_add( float addend )
{
return this->operator+=(-addend);
}
float fetch_and_increment()
{
return this->operator+=(1);
}
float fetch_and_decrement()
{
return this->operator+=(-1);
}
};
Thanks!
Edit: changed size_t to uint32_t as Greg Rogers suggested, that way its more portable
Edit: added listing for the entire thing, with some fixes.
More Edits: Performance wise using a locked float for 5.000.000 += operations with 100 threads on my machine takes 3.6s, while my atomic float even with its silly do-while takes 0.2s to do the same work. So the >30x performance boost means its worth it, (and this is the catch) if its correct.
Even More Edits: As Awgn pointed out my fetch_and_xxxx
parts were all wrong. Fixed that and removed parts of the API I'm not sure about (templated memory models). And implemented other operations in terms of operator += to avoid code repetition
Added: Added operator *= and operator /=, since floats wouldn't be floats without them. Thanks to Peterchen's comment that this was noticed
Edit: Latest version of the code follows (I'll leave the old version for reference though)
#include <tbb/atomic.h>
typedef unsigned int uint_32;
typedef __TBB_LONG_LONG uint_64;
template<typename FLOATING_POINT,typename MEMORY_BLOCK>
struct atomic_float_
{
/* CRC Card -----------------------------------------------------
| Class: atmomic float template class
|
| Responsability: handle integral atomic memory as it were a float,
| but partially bypassing FPU, SSE/MMX, so it is
| slower than a true float, but faster and smaller
| than a locked float.
| *Warning* If your float usage is thwarted by
| the A-B-A problem this class isn't for you
| *Warning* Atomic specification says we return,
| values not l-values. So (i = j) = k doesn't work.
|
| Collaborators: intel's tbb::atomic handles memory atomicity
----------------------------------------------------------------*/
typedef typename atomic_float_<FLOATING_POINT,MEMORY_BLOCK> self_t;
tbb::atomic<MEMORY_BLOCK> atomic_value_;
template<memory_semantics M>
FLOATING_POINT fetch_and_store( FLOATING_POINT value )
{
const MEMORY_BLOCK value_ =
atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store<M>((MEMORY_BLOCK&)value);
//atomic specification requires returning old value, not new one
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
FLOATING_POINT fetch_and_store( FLOATING_POINT value )
{
const MEMORY_BLOCK value_ =
atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store((MEMORY_BLOCK&)value);
//atomic specification requires returning old value, not new one
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
template<memory_semantics M>
FLOATING_POINT compare_and_swap( FLOATING_POINT value, FLOATING_POINT comparand )
{
const MEMORY_BLOCK value_ =
atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap<M>((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
//atomic specification requires returning old value, not new one
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
FLOATING_POINT compare_and_swap(FLOATING_POINT value, FLOATING_POINT compare)
{
const MEMORY_BLOCK value_ =
atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
//atomic specification requires returning old value, not new one
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
operator FLOATING_POINT() const volatile // volatile qualifier here for backwards compatibility
{
const MEMORY_BLOCK value_ = atomic_value_;
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
//Note: atomic specification says we return the a copy of the base value not an l-value
FLOATING_POINT operator=(FLOATING_POINT rhs)
{
const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
return reinterpret_cast<const FLOATING_POINT&>(value_);
}
//Note: atomic specification says we return an l-value when operating among atomics
self_t& operator=(self_t& rhs)
{
const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
return *this;
}
FLOATING_POINT& _internal_reference() const
{
return reinterpret_cast<FLOATING_POINT&>(atomic_value_.tbb::atomic<MEMORY_BLOCK>::_internal_reference());
}
FLOATING_POINT operator+=(FLOATING_POINT value)
{
FLOATING_POINT old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
new_value_ = old_value_ + value;
//floating point binary representation is not an issue because
//we are using our self's compare and swap, thus comparing floats and floats
} while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_); //return resulting value
}
FLOATING_POINT operator*=(FLOATING_POINT value)
{
FLOATING_POINT old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
new_value_ = old_value_ * value;
//floating point binary representation is not an issue becaus
//we are using our self's compare and swap, thus comparing floats and floats
} while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_); //return resulting value
}
FLOATING_POINT operator/=(FLOATING_POINT value)
{
FLOATING_POINT old_value_, new_value_;
do
{
old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
new_value_ = old_value_ / value;
//floating point binary representation is not an issue because
//we are using our self's compare and swap, thus comparing floats and floats
} while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
return (new_value_); //return resulting value
}
FLOATING_POINT operator-=(FLOATING_POINT value)
{
return this->operator+=(-value); //return resulting value
}
//Prefix operator
FLOATING_POINT operator++()
{
return this->operator+=(1); //return resulting value
}
//Prefix operator
FLOATING_POINT operator--()
{
return this->operator+=(-1); //return resulting value
}
//Postfix operator
FLOATING_POINT operator++(int)
{
const FLOATING_POINT temp = this;
this->operator+=(1);
return temp//return resulting value
}
//Postfix operator
FLOATING_POINT operator--(int)
{
const FLOATING_POINT temp = this;
this->operator+=(1);
return temp//return resulting value
}
FLOATING_POINT fetch_and_add( FLOATING_POINT addend )
{
const FLOATING_POINT old_value_ = atomic_value_;
this->operator+=(addend);
//atomic specification requires returning old value, not new one as in operator x=
return old_value_;
}
FLOATING_POINT fetch_and_increment()
{
const FLOATING_POINT old_value_ = atomic_value_;
this->operator+=(+1);
//atomic specification requires returning old value, not new one as in operator x=
return old_value_;
}
FLOATING_POINT fetch_and_decrement()
{
const FLOATING_POINT old_value_ = atomic_value_;
this->operator+=(-1);
//atomic specification requires returning old value, not new one as in operator x=
return old_value_;
}
};
typedef atomic_float_<float,uint_32> AtomicFloat;
typedef atomic_float_<double,uint_64> AtomicDouble;