Dave Hillier's approach is the right one. Separate GetArea()
into its own interface:
class ThingWithArea
{
public:
virtual double GetArea() const = 0;
};
If the designers of Shape had done the right thing and made it a pure interface,
and the public interfaces of the concrete classes were powerful enough, you could
have instances of concrete classes as members. This is how you get SquareWithArea
(ImprovedSquare
is a poor name) being a Shape
and a ThingWithArea
:
class SquareWithArea : public Shape, public ThingWithArea
{
public:
double GetPerimeter() const { return square.GetPerimeter(); }
double GetArea() const { /* do stuff with square */ }
private:
Square square;
};
Unfortunately, the Shape
designers put some implementation into Shape
, and you
would end up carrying two copies of it per SquareWithArea
, just like in
the diamond you originally proposed.
This pretty much forces you into the most tightly coupled, and therefore least
desirable, solution:
class SquareWithArea : public Square, public ThingWithArea
{
};
These days, it's considered bad form to derive from concrete classes in C++.
It's hard to find a really good explanation why you shouldn't. Usually, people
cite Meyers's More Effective C++ Item 33, which points out the impossibility
of writing a decent operator=()
among other things. Probably, then, you should
never do it for classes with value semantics. Another pitfall is where the
concrete class doesn't have a virtual destructor (this is why you should
never publicly derive from STL containers). Neither applies here. The poster
who condescendingly sent you to the C++ faq to learn about inheritance is
wrong - adding GetArea()
does not violate Liskov substitutability. About
the only risk I can see comes from overriding virtual functions in the
concrete classes, when the implementer later changes the name and silently breaks
your code.
In summary, I think you can derive from Square with a clear conscience.
(As a consolation, you won't have to write all the forwarding functions for
the Shape interface).
Now for the problem of functions which need both interfaces. I don't like
unnecessary dynamic_cast
s. Instead, make the function take references to
both interfaces and pass references to the same object for both at the call site:
void PrintPerimeterAndArea(const Shape& s, const ThingWithArea& a)
{
cout << s.GetPerimeter() << endl;
cout << a.GetArea() << endl;
}
// ...
SquareWithArea swa;
PrintPerimeterAndArea(swa, swa);
All PrintPerimeterAndArea()
needs to do its job is a source of perimeter and a
source of area. It is not its concern that these happen to be implemented
as member functions on the same object instance. Conceivably, the area could
be supplied by some numerical integration engine between it and the Shape
.
This gets us to the only case where I would consider passing in one reference
and getting the other by dynamic_cast
- where it's important that the two
references are to the same object instance. Here's a very contrived example:
void hardcopy(const Shape& s, const ThingWithArea& a)
{
Printer p;
if (p.HasEnoughInk(a.GetArea()))
{
s.print(p);
}
}
Even then, I would probably prefer to send in two references rather than
dynamic_cast
. I would rely on a sane overall system design to eliminate the
possibility of bits of two different instances being fed to functions like this.