I have a what I think is a simple machine learning question.
Here is the basic problem: I am repeatedly given a new object and a list of descriptions about the object. For example: new_object: 'bob'
new_object_descriptions: ['tall','old','funny']
. I then have to use some kind of machine learning to find previously handled objects that have the 10 or less most similar descriptions, for example, past_similar_objects: ['frank','steve','joe']
. Next, I have an algorithm that can directly measure whether these objects are indeed similar to bob, for example, correct_objects: ['steve','joe']
. The classifier is then given this feedback training of successful matches. Then this loop repeats with a new object.
a
Here's the pseudo-code:
Classifier=new_classifier()
while True:
new_object,new_object_descriptions = get_new_object_and_descriptions()
past_similar_objects = Classifier.classify(new_object,new_object_descriptions)
correct_objects = calc_successful_matches(new_object,past_similar_objects)
Classifier.train_successful_matches(object,correct_objects)
But, there are some stipulations that may limit what classifier can be used:
There will be millions of objects put into this classifier so classification and training needs to scale well to millions of object types and still be fast. I believe this disqualifies something like a spam classifier that is optimal for just two types: spam or not spam. (Update: I could probably narrow this to thousands of objects instead of millions, if that is a problem.)
Again, I prefer speed when millions of objects are being classified, over accuracy.
Update: The classifier should return the 10 (or fewer) most similar objects, based on feedback from past training. Without this limit, an obvious cheat would be for the classifier could just return all past objects :)
What are decent, fast machine learning algorithms for this purpose?
Note: The calc_successful_matches distance metric is extremely expensive to calculate and that's why I'm using a fast machine learning algorithm to try to guess which objects will be close before I actually do the expensive calculation.