What kind of SSD do you have ? My C implementation of MD5 runs at 400 MB/s on a single Intel Core2 core (2.4 GHz, not the latest Intel). Do you really have SSD which support a bandwidth of 1.6 GB/s ? I want the same !
Tree hashing can be applied on any hash function. There are a few subtleties and the Skein specification tries to deal with them, integrating some metadata in the function itself (this does not change much things for performance), but the "tree mode" of Skein is not "the" Skein as submitted to SHA-3. Even if Skein is selected as SHA-3, the output of a tree-mode hash would not be the same as the output of "plain Skein".
Hopefully, a standard will be defined at some point, to describe generic tree hashing. Right now there is none. However, some protocols have been defined with support for a custom tree hashing with the Tiger hash function, under the name "TTH" (Tiger Tree Hash) or "THEX" (Tree Hash Exchange Format). The specification for TTH appears to be a bit elusive; I find some references to drafts which have either moved or disappeared for good.
Still, I am a bit dubious about the concept. It is kind of neat, but provides a performance boost only if you can read data faster than what a single core can process, and, given the right function and the right implementation, a single core can hash quite a lot of data per second. A tree hash spread over several cores requires having the data sent to the proper cores, and 1.6 GB/s is not the smallest bandwidth ever.
SHA-256 and SHA-512 are not very fast. Among the SHA-3 candidates, assuming an x86 processor in 64-bit mode, some of them achieve high speed (more than 300 MB/s on my 2.4 GHz Intel Core2 Q6600, with a single core -- that's what I can get out of SHA-1, too), e.g. BMW, SHABAL or Skein. Cryptographically speaking, these designs are a bit too new, but MD5 and SHA-1 are already cryptographically "broken" (quite effectively in the case of MD5, rather theoretically for SHA-1) so any of the round-2 SHA-3 candidates should be fine.
When I put my "seer" cap, I foresee that processors will keep on becoming faster than RAM, to the point that hashing cost will be dwarfed out by memory bandwidth: the CPU will have clock cycles to spare while it waits for the data from the main RAM. At some point, the whole threading model (one big RAM for many cores) will have to be amended.