A good hash function has the following properties:
Given a hash of a message it is computationally infeasible for an attacker to find another message such that their hashes are identical.
Given a pair of message, m' and m, it is computationally infeasible to find two such that that h(m) = h(m')
The two cases are not the same. In the first case, there is a pre-existing hash that you're trying to find a collision for. In the second case, you're trying to find any two messages that collide. The second task is significantly easier due to the birthday "paradox."
Where performance is not that great an issue, you should always use a secure hash function. There are very clever attacks that can be performed by forcing collisions in a hash. If you use something strong from the outset, you'll secure yourself against these.
Don't use MD5 or SHA-1 in new designs. Most cryptographers, me included, would consider them broken. The principle source of weakness in both of these designs is that the second property, which I outlined above, does not hold for these constructions. If an attacker can generate two messages, m and m', that both hash to the same value they can use these messages against you. SHA-1 and MD5 also suffer from message extension attacks, which can fatally weaken your application if you're not careful.
A more modern hash such as Whirpool is a better choice. It does not suffer from these message extension attacks and uses the same mathematics as AES uses to prove security against a variety of attacks.
Hope that helps!