The best I could come up with is to produce a matrix of sums of each pair, and then merge the rows together, a-la merge sort. I feel like I'm missing some simple insight that will reveal a much more efficient solution.
My algorithm, in Haskell:
matrixOfSums list = [[a+b | b <- list, b >= a] | a <- list]
sortedSums = foldl merge [] matrixOfSums
--A normal merge, save that we remove duplicates
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = case compare x y of
LT -> x:(merge xs (y:ys))
EQ -> x:(merge xs (dropWhile (==x) ys))
GT -> y:(merge (x:xs) ys)
I found a minor improvement, one that's more amenable to lazy stream-based coding. Instead of merging the columns pair-wise, merge all of them at once. The advantage being that you start getting elements of the list immediately.
-- wide-merge does a standard merge (ala merge-sort) across an arbitrary number of lists
-- wideNubMerge does this while eliminating duplicates
wideNubMerge :: Ord a => [[a]] -> [a]
wideNubMerge ls = wideNubMerge1 $ filter (/= []) ls
wideNubMerge1 [] = []
wideNubMerge1 ls = mini:(wideNubMerge rest)
where mini = minimum $ map head ls
rest = map (dropWhile (== mini)) ls
betterSortedSums = wideNubMerge matrixOfSums
However, if you know you're going to use all of the sums, and there's no advantage to getting some of them earlier, go with 'foldl merge []
', as it's faster.