This is a classical example of a recursive function, a function that calls itself.
If you read it carefully, you'll see that it will call itself, or, recurse, over and over again, until it reaches the so called base case, when x <= 1
at which point it will start to "back track" and sum up the computed values.
The following code clearly prints out the trace of the algorithm:
public class Test {
static String indent = "";
public static int fibonacci(int x) {
indent += " ";
System.out.println(indent + "invoked with " + x);
if (x <= 1) {
System.out.println(indent + "x = " + x + ", base case reached.");
indent = indent.substring(4);
return 1;
}
System.out.println(indent + "Recursing on " + (x-1) + " and " + (x-2));
int retVal = fibonacci(x-1) + fibonacci(x-2);
System.out.println(indent + "returning " + retVal);
indent = indent.substring(4);
return retVal;
}
public static void main(String... args) {
System.out.println("Fibonacci of 3: " + fibonacci(3));
}
}
The output is the following:
invoked with 3
Recursing on 2 and 1
invoked with 2
Recursing on 1 and 0
invoked with 1
x = 1, base case reached.
invoked with 0
x = 0, base case reached.
returning 2
invoked with 1
x = 1, base case reached.
returning 3
Fibonacci of 3: 3
A tree depiction of the trace would look something like
fib 4
fib 3 + fib 2
fib 2 + fib 1 fib 1 + fib 0
fib 1 + fib 0 1 1 1
1 1
The important parts to think about when writing recursive functions are:
1. Take care of the base case
What would have happened if we had forgotten if (x<=1) return 1;
in the example above?
2. Make sure the recursive calls somehow decrease towards the base case
What would have happened if we accidentally modified the algorithm to return fibonacci(x)+fibonacci(x-1);