What is so great about the STL ?
The STL is great in that it was conceived very early and yet succeeded in using C++ generic programming paradigm quite efficiently.
It separated efficiently the data structures: vector
, map
, ... and the algorithms to operate on them copy
, transform
, ... taking advantage of templates to do so.
It neatly decoupled concerns and provided generic containers with hooks of customization (Comparator
and Allocator
template parameters).
The result is very elegant (DRY principle) and very efficient thanks to compiler optimizations so that hand-generated algorithms for a given container are unlikely to do better.
It also means that it is easily extensible: you can create your own container with the interface you wish, as long as it exposes STL-compliant iterators you'll be able to use the STL algorithms with it!
And thanks to the use of traits, you can even apply the algorithms on C-array through plain pointers! Talk about backward compatibility!
However, it could (perhaps) have been better...
What is not so great about the STL ?
It really pisses me off that one always have to use the iterators, I'd really stand for being able to write: std::foreach(myVector, [](int x) { return x+1;});
because face it, most of the times you want to iterate over the whole of the container...
But what's worse is that because of that:
set<int> mySet = /**/;
set<int>::const_iterator it = std::find(mySet.begin(), mySet.end(), 1005); // [1]
set<int>::const_iterator it = mySet.find(1005); // [2]
[1]
and [2]
are carried out completely differently, resulting in [1]
having O(n) complexity while [2]
has O(log n) complexity! Here the problem is that the iterators abstract too much.
I don't mean that iterators are not worthy, I just mean that providing an interface exclusively in terms of iterators was a poor choice.
I much prefer myself the idea of views over containers, for example check out what has been done with Boost.MPL. With a view you manipulate your container with a (lazy) layer of transformation. It makes for very efficient structures that allows you to filter out some elements, transform others etc...
Combining views and concept checking ideas would, I think, produce a much better interface for STL algorithms (and solve this find
, lower_bound
, upper_bound
, equal_range
issue).
It would also avoid common mistakes of using ill-defined ranges of iterators and the undefined behavior that result of it...