I agree with avakar and nico, but I'd like to add a little more explanation. Lowering the sample rate of PCM audio is not trivial unless two things are true:
Your signal only contains significant frequencies lower than 1/2 the new sampling rate (Nyquist rate). In this case you do not need an anti-aliasing filter.
You are downsampling by an integer value. In this case, downampling by N just requires keeping every Nth sample and dropping the rest.
If these are true, you can just drop samples at a regular interval to downsample. However, they are both probably not true if you're dealing with anything other than a synthetic signal.
To address problem one, you will have to filter the audio samples with a low-pass filter to make sure the resulting signal only contains frequency content up to 1/2 the new sampling rate. If this is not done, high frequencies will not be accurately represented and will alias back into the frequencies that can be properly represented, causing major distortion. Check out the critical frequency section of this wikipedia article for an explanation of aliasing. Specifically, see figure 7 that shows 3 different signals that are indistinguishable by just the samples because the sampling rate is too low.
Addressing problem two can be done in multiple ways. Sometimes it is performed in two steps: an upsample followed by a downsample, therefore achieving rational change in the sampling rate. It may also be done using interpolation or other techniques. Basically the problem that must be solved is that the samples of the new signal do not line up in time with samples of the original signal.
As you can see, resampling audio can be quite involved, so I would take nico's advice and use an existing library. Getting the filter step right will require you to learn a lot about signal processing and frequency analysis. You won't have to be an expert, but it will take some time.