Transforming recursively-defined sequences of integers into ones that can be expressed in a closed form is a fascinating part of discrete mathematics -- I heartily recommend Concrete Mathematics: A Foundation for Computer Science, by Ronald Graham, Donald Knuth, and Oren Patashnik (see. e.g. the wikipedia entry about it).
However, the specific sequence you show, fac(x) = fac(x - 1) + x
, according to a famous anecdote, was solved by Gauss when he was a child in first grade -- the teacher had given the pupils the taksk of summing numbers from 1 to 100 to keep them quet for a while, but two minutes later there was young Gauss with the answer, 5050, and the explanation: "I noticed that I can sum the first, 1, and the last, 100, that's 101; and the second, 2, and the next-to-last, 99, and that's again 101; and clearly that repeats 50 times, so, 50 times 101, 5050". Not rigorous as proofs go, but quite correct and appropriate for a 6-years-old;-).
In the same way (plus really elementary algebra) you can see that the general case is, as many have already said, (N * (N+1)) / 2
(the product is always even, since one of the numbers must be odd and one even; so the division by two will always produce an integer, as desired, with no remainder).