views:

299

answers:

2

Although the context of this question is about making a 2d/3d game, the problem i have boils down to some math. Although its a 2.5D world, lets pretend its just 2d for this question.

// xa: x-accent, the x coordinate of the projection
// mapP: a coordinate on a map which need to be projected
// _Dist_ values are constants for the projection, choosing them correctly will result in i.e. an isometric projection 
xa = mapP.x * xDistX + mapP.y * xDistY; 
ya = mapP.x * yDistX + mapP.y * yDistY;

xDistX and yDistX determine the angle of the x-axis, and xDistY and yDistY determine the angle of the y-axis on the projection (and also the size of the grid, but lets assume this is 1-pixel for simplicity).

x-axis-angle = atan(yDistX/xDistX)
y-axis-angle = atan(yDistY/yDistY)

a "normal" coordinate system like this

--------------- x
|
|
|
|
|
y

has values like this:
xDistX = 1;
yDistX = 0;
xDistY = 0;
YDistY = 1;

So every step in x direction will result on the projection to 1 pixel to the right end 0 pixels down. Every step in the y direction of the projection will result in 0 steps to the right and 1 pixel down. When choosing the correct xDistX, yDistX, xDistY, yDistY, you can project any trimetric or dimetric system (which is why i chose this).

So far so good, when this is drawn everything turns out okay. If "my system" and mindset are clear, lets move on to perspective. I wanted to add some perspective to this grid so i added some extra's like this:

camera = new MapPoint(60, 60);
dx = mapP.x - camera.x; // delta x
dy = mapP.y - camera.y; // delta y
dist = Math.sqrt(dx * dx + dy * dy); // dist is the distance to the camera, Pythagoras etc.. all objects must be in front of the camera

fac = 1 - dist / 100; // this formula determines the amount of perspective

xa = fac * (mapP.x * xDistX  + mapP.y * xDistY) ;
ya = fac * (mapP.x * yDistX + mapP.y * yDistY );

Now the real hard part... what if you got a (xa,ya) point on the projection and want to calculate the original point (x,y). For the first case (without perspective) i did find the inverse function, but how can this be done for the formula with the perspective. May math skills are not quite up to the challenge to solve this.

( I vaguely remember from a long time ago mathematica could create inverse function for some special cases... could it solve this problem? Could someone maybe try?)

+1  A: 

The function you've defined doesn't have an inverse. Just as an example, as user207422 already pointed out anything that's 100 units away from the camera will get mapped to (xa,ya)=(0,0), so the inverse isn't uniquely defined.

More importantly, that's not how you calculate perspective. Generally the perspective scaling factor is defined to be viewdist/zdist where zdist is the perpendicular distance from the camera to the object and viewdist is a constant which is the distance from the camera to the hypothetical screen onto which everything is being projected. (See the diagram here, but feel free to ignore everything else on that page.) The scaling factor you're using in your example doesn't have the same behaviour.

Here's a stab at trying to convert your code into a correct perspective calculation (note I'm not simplifying to 2D; perspective is about projecting three dimensions to two, trying to simplify the problem to 2D is kind of pointless):

camera = new MapPoint(60, 60, 10);
camera_z = camera.x*zDistX + camera.y*zDistY + camera.z*zDistz;

// viewdist is the distance from the viewer's eye to the screen in
// "world units". You'll have to fiddle with this, probably.
viewdist = 10.0;

xa = mapP.x*xDistX + mapP.y*xDistY + mapP.z*xDistZ;
ya = mapP.x*yDistX + mapP.y*yDistY + mapP.z*yDistZ;
za = mapP.x*zDistX + mapP.y*zDistY + mapP.z*zDistZ;

zdist = camera_z - za;
scaling_factor = viewdist / zdist;
xa *= scaling_factor;
ya *= scaling_factor;

You're only going to return xa and ya from this function; za is just for the perspective calculation. I'm assuming the the "za-direction" points out of the screen, so if the pre-projection x-axis points towards the viewer then zDistX should be positive and vice-versa, and similarly for zDistY. For a trimetric projection you would probably have xDistZ==0, yDistZ<0, and zDistZ==0. This would make the pre-projection z-axis point straight up post-projection.

Now the bad news: this function doesn't have an inverse either. Any point (xa,ya) is the image of an infinite number of points (x,y,z). But! If you assume that z=0, then you can solve for x and y, which is possibly good enough.

To do that you'll have to do some linear algebra. Compute camera_x and camera_y similar to camera_z. That's the post-transformation coordinates of the camera. The point on the screen has post-tranformation coordinates (xa,ya,camera_z-viewdist). Draw a line through those two points, and calculate where in intersects the plane spanned by the vectors (xDistX, yDistX, zDistX) and (xDistY, yDistY, zDistY). In other words, you need to solve the equations:

x*xDistX + y*xDistY == s*camera_x + (1-s)*xa
x*yDistX + y*yDistY == s*camera_y + (1-s)*ya
x*zDistX + y*zDistY == s*camera_z + (1-s)*(camera_z - viewdist)

It's not pretty, but it will work.

Peter Milley
+1  A: 

I think that with your post i can solve the problem. Still, to clarify some questions:

Solving the problem in 2d is useless indeed, but this was only done to make the problem easier to grasp (for me and for the readers here). My program actually give's a perfect 3d projection (i checked it with 3d images rendered with blender). I did left something out about the inverse function though. The inverse function is only for coordinates between 0..camera.x * 0.5 and 0.. camera.y*0.5. So in my example between 0 and 30. But even then i have doubt's about my function.

In my projection the z-axis is always straight up, so to calculate the height of an object i only used the vieuwingangle. But since you cant actually fly or jumpt into the sky everything has only a 2d point. This also means that when you try to solve the x and y, the z really is 0.

I know not every funcion has an inverse, and some functions do, but only for a particular domain. My basic thought in this all was... if i can draw a grid using a function... every point on that grid maps to exactly one map-point. I can read the x and y coordinate so if i just had the correct function i would be able to calculate the inverse. But there is no better replacement then some good solid math, and im very glad you took the time to give a very helpfull responce :).

Just for future reference, this normally would have gone in an edit to your question, or perhaps in comments.
Joren