Well, lets consider the realistic problem first and see why this doesn't work and how we have to differ from it. In space as long as your engines are firing, you will be accelerating. Your speed is only limited by your fuel (and in fact you can accelerate faster once you've spent some fuel because your moving less mass).
To give this model an effective maximum speed, you can consider particles in space slowing you down and causing friction. The faster you go, the more particles you're hitting and the faster you're hitting them, so eventually at some fast enough speed, you will be hitting enough particles the amount of decelerating they do exactly cancels out the amount of accelerating your engine is doing.
This realistic model does NOT sound like what you want. The reason being: You have to introduce friction. This means if you cut your engines, you will automatically start to slow down. You can probably count this as one of the unintended forces you do not want.
This leaves us with reducing the effective force of your engine to 0 upon reaching a certain speed. Now keep in mind if your going max speed in the north direction, you still want force to be able to push you in the east direction, so your engines shouldn't be cut out by raw velocity alone, but instead based on the velocity your going in the direction your engines are pointing.
So, for the math:
You want to do a cross dot product between your engine pointing vector and your velocity vector to get the effective velocity in the direction your engines are pointing. Once you have this velocity, say, 125 mph (with a max speed of 150) you can then scale back the force of your engines is exerting to (150-125)/150*(Force of Engines).
This will drastically change the velocity graph of how long it will take you to accelerate to full speed. As you approach the full speed your engines become less and less powerful. Test this out and see if it is what you want. Another approach is to just say Force of Engines = 0 if the dot product is >=150, otherwise it is full force. This will allow you to accelerate linearly to your max speed, but no further.
Now that I think about it, this model isn't perfect, because you could accelerate to 150 mph in the north direction, and then turn east and accelerate to 150 mph going in that direction for a total of 212 mph in the north east direction, so not a perfect solution.