List1 contains a high number (~7^10) of N-dimensional points (N <=10), List2 contains the same or fewer number of N-dimensional points (N <=10).
My task is this: I want to check which point in List2 is closest (euclidean distance) to a point in List1 for every point in List1 and subsequently perform some operation on it. I have been doing it the simple- the nested loop way when I didn't have more than 50 points in List1, but with 7^10 points, this obviously takes up a lot of time.
What is the fastest way to do this? Any concepts from Computational Geometry might help?
EDIT: I have the following in place, I have built a kd-tree out of List2 and then now I am doing a nearest-neighborhood search for each point in List1. Now as I originally pointed out, List1 has 7^10 points, and hence though I am saving on the brute force, Euclidean distance method for every pair, the sheer large number of points in List1 is causing a lot of time consumption. Is there any way I can improve this?