There are three aspects to my answer: (1) control theory, (2) sensing, and (3) merging sensing and action.
CONTROL THEORY
The answer to your problem depends partially on what kind of control scheme you are using: is it feed-forward or feedback control? If the latter, what simulated real-time sensors do you have other than terrain information?
Simply having terrain information and incorporating it into your control strategy would not mean you are using feedback control. It is possible to use such information to select a feed-forward strategy, which seems closest to the problem that you have described.
SENSING
Whether you are using feed-forward or feedback control, you need to represent the terrain information and any other sensory data as an input space for your control system. Part of training your GA-based motion controller should be moving your skeleton through a broad range of random terrain in order to learn feature detectors. The feature detectors classify the terrain scenarios by segmenting the input space into regions critical to deciding what is the best action policy, i.e., what control behavior to employ.
How to best represent the input space depends on the level of granularity of the terrain information you have for your simulation. If it's just a discrete space of terrain type and/or obstacles in some grid space, you may be able to present it directly to your GA without transformation. If, however, the data is in a continuous space such as terrain type and obstacles at arbitrary range/direction, you may need to transform it into a space from which it may be easier to infer spatial relationships, such as coarse-coded range and direction, e.g., near, mid, far and forward, left-forward, left, etc. Gaussian and fuzzy classifiers can be useful for the latter approach, but discrete-valued coding can also work.
MERGING SENSING AND ACTION
Using one of the input-space-encoding approaches above, you have a few options for how to connect behavior selection search space and motion control search space:
Separate the two spaces into two learning problems and use a separate GA to evolve the parameters of a standard multi-layer perceptron neural network. The latter would have your sensor data (perhaps transformed) as inputs and your set of skeleton behaviors as outputs. Instead of using back-propagation or some other ANN-learning method to learn the network weights, your GA could use some fitness function to evolve the parameters over a series of simulated trials, e.g., fitness = distance traveled in a fixed time period toward point B starting from point A. This should evolve over successive generations from completely random selection of behaviors to something more coordinated and useful.
Merge the two search spaces (behavior selection and skeleton motor control) by linking a multi-layer perceptron network as described in (1) above into the existing GA-based controller framework that you have, using the skeleton behavior set as the linkage. The parameter space that will be evolved will be both the neural network weights and whatever your existing controller parameter space is. Assuming that you are using a multi-objective genetic algorithm, such as the NSGA-II algorithm, (since you have multiple fitness functions), the fitness functions would be stability, speed, minimization of entropy, force on joints, etc, plus some fitness function(s) targeted at learning the behavior-selection policy, e.g., distance moved toward point B starting from point A in a fixed time period.
The difference between this approach and (1) above is that you may be able to learn both better coordination of behaviors and finer-grain motor control since the parameter space is likely to be better explored when the two problems are merged as opposed to being separate. The downside is that it may take much longer to converge on reasonable parameter solutions(s), and not all aspects of motor control may be learned as well as they would if the two learning problems were kept separate.
Given that you already have working evolved solutions for the motor control problem, you are probably better off using approach (1) to learn the behavior-selection model with a separate GA. Also, there are many alternatives to the hybrid GA-ANN scheme I described above for learning the latter model, including not learning a model at all and instead using a path planning algorithm as described in a separate answer from me. I simply offered this approach since you are already familiar with GA-based machine learning.
The action selection problem is a robust area of research in both machine learning and autonomous robotics. It's probably well-worth reading up on this topic in itself to gain better perspective and insight into your current problem, and you may be able to devise a simpler strategy than anything I've suggested so far by viewing your problem through the lens of this paradigm.