CDMA 1x consists of up to 15 channels of 9.6kbps traffic. This results in a total throughput of 144kbps.
Two channels are used for command and control signals (talking to base stations, associating/disassociating, SMS traffic, ring signals, etc).
That leaves you with up to 124.8kbps.
--> Each channel is one way. <--
They are dynamically switched and allocated depending on the need.
Generally you'll get more download than upload because that's the typical cell phone modem usage. But you'll never get more than 120kbps total aggregate bandwidth.
In practise, due to overhead of 1xRTT encoding, error correction, resends, etc, you'll typically experience between 60kbps and 90kbps even if you have all the channels possible.
This means that you can probably only get 30kbps-60kbps of upload and download simultaneously.
Further, due to switching the channels dynamically (and the fact that the base station controls this more than your modem - they need to manage base station channels carefully to keep channels free for voice calls) you'll lose time when it switches channels - it's not an instantaneous process.
So - 1xRTT can, in theory, give you 124kbps one way, but due to overhead, switching times, base station capacity, or the phone company simply limiting such connections for other reasons, you can't depend on a symmetrical link.
NOTE:
This will vary to some degree based on the provider and the modem. For instance, some modems have 16 channels, and some providers support 16 channels. In some cases those modems and providers work well together and can provide a full 144kbps aggregate raw bandwidth to the application, with only one dedicated channel (which has to work pretty hard) to deal with control, switching, and other issues. Even then, though, with the overhead of the modem communications, then the overhead of PPP, then the overhead of IP, then the overhead of TCP, you're still looking at maybe 100-120kbps total bandwidth, both up and down.
Lastly, no provider yet supports transparent transfer of IP traffic. In other words if you're modem is moving, the modem will switch to a new base station, but you'll completely drop the PPP session and have to restart it, as well as all the TCP sessions and such. You typically won't get the same IP address, and so your TCP sessions will not recover gracefully.
The "fun" aspect to this twist is that this can happen even if you aren't moving. If one base station gets loaded down, you may be transferred to another base station if you are close enough - there are other things that may make your modem transfer even without you moving. So make sure you take this into account, since you seem to be keen on maintaining a full duplex, symmetric channel open. It's tough to write stuff that will recover gracefully, nevermind anticipate it and do it quickly. You would do well to work very closely with a modem manufacturer (such as Kyocera) on this - otherwise you won't get the documentation on how to control the modem chipset at the low level that you need.