Alternatively, you could approach this problem as the yellow tiles "eroding" away at the blue/background. To do this, at every step, have a yellow tile add a fixed number to the "erosion sum" E of all of the background tiles neighboring it in a cardinal direction (and perhaps maybe a fraction of that to the background tiles neighboring it diagonally).
Then, when it comes time to place a new tile, you can, for each background tile, pick a random number from 0 to E; the greatest one is "eroded" away. Alternatively, you could do a simple weighted random choice, with E being their weights.
For 2x2 or 3x3 tiles, you can pick only from tiles that suitably "fit" a 2x2 or 3x3 square in it (that is, a 2x2 or 3x3 the eroded tile on its edge, so that it doesn't cause overlap with already-placed tiles). But really, you're never going to get something looking as natural as one-by-one erosion/tile placement.
You can save time recalculating erosion sums by having them persist with each iteration, only, when you add a new tile, up the erosion sums of the ones around it (a simple +=
). At this point, it is essentially the same as another answer suggested, albeit with a different perspective/philosophy.
A sample grid of Erosion Sums E, with direct cardinal neighbors being +4, and diagonal neighbors being +1:
The ones with a higher E are most likely to be "eroded" away; for example, in this one, the two little inlets on the west and south faces are most likely to be eroded away by the yellow, followed by the smaller bays on the north and east faces. Least likely are the ones barely touching the yellow by one corner. You can decide which one either by assigning a random number from 0 to E for each tile and eroding the one with the highest random number, or doing a simple weighted random selection, or by any decision method of your choice.